Description: Weak base ordering relationship for exponentiation of real bases to a fixed nonnegative integer exponent. (Contributed by NM, 18-Dec-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | leexp1a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | oveq2 | |
|
3 | 1 2 | breq12d | |
4 | 3 | imbi2d | |
5 | oveq2 | |
|
6 | oveq2 | |
|
7 | 5 6 | breq12d | |
8 | 7 | imbi2d | |
9 | oveq2 | |
|
10 | oveq2 | |
|
11 | 9 10 | breq12d | |
12 | 11 | imbi2d | |
13 | oveq2 | |
|
14 | oveq2 | |
|
15 | 13 14 | breq12d | |
16 | 15 | imbi2d | |
17 | recn | |
|
18 | recn | |
|
19 | exp0 | |
|
20 | 19 | adantr | |
21 | 1le1 | |
|
22 | 20 21 | eqbrtrdi | |
23 | exp0 | |
|
24 | 23 | adantl | |
25 | 22 24 | breqtrrd | |
26 | 17 18 25 | syl2an | |
27 | 26 | adantr | |
28 | reexpcl | |
|
29 | 28 | ad4ant14 | |
30 | simplll | |
|
31 | simpr | |
|
32 | simplrl | |
|
33 | expge0 | |
|
34 | 30 31 32 33 | syl3anc | |
35 | reexpcl | |
|
36 | 35 | ad4ant24 | |
37 | 29 34 36 | jca31 | |
38 | simpl | |
|
39 | simpl | |
|
40 | 38 39 | anim12i | |
41 | 40 | adantr | |
42 | simpllr | |
|
43 | 37 41 42 | jca32 | |
44 | 43 | adantr | |
45 | simplrr | |
|
46 | 45 | anim1ci | |
47 | lemul12a | |
|
48 | 44 46 47 | sylc | |
49 | expp1 | |
|
50 | 17 49 | sylan | |
51 | 50 | ad5ant14 | |
52 | expp1 | |
|
53 | 18 52 | sylan | |
54 | 53 | ad5ant24 | |
55 | 48 51 54 | 3brtr4d | |
56 | 55 | ex | |
57 | 56 | expcom | |
58 | 57 | a2d | |
59 | 4 8 12 16 27 58 | nn0ind | |
60 | 59 | exp4c | |
61 | 60 | com3l | |
62 | 61 | 3imp1 | |