Metamath Proof Explorer


Theorem leexp1a

Description: Weak base ordering relationship for exponentiation of real bases to a fixed nonnegative integer exponent. (Contributed by NM, 18-Dec-2005)

Ref Expression
Assertion leexp1a ABN00AABANBN

Proof

Step Hyp Ref Expression
1 oveq2 j=0Aj=A0
2 oveq2 j=0Bj=B0
3 1 2 breq12d j=0AjBjA0B0
4 3 imbi2d j=0AB0AABAjBjAB0AABA0B0
5 oveq2 j=kAj=Ak
6 oveq2 j=kBj=Bk
7 5 6 breq12d j=kAjBjAkBk
8 7 imbi2d j=kAB0AABAjBjAB0AABAkBk
9 oveq2 j=k+1Aj=Ak+1
10 oveq2 j=k+1Bj=Bk+1
11 9 10 breq12d j=k+1AjBjAk+1Bk+1
12 11 imbi2d j=k+1AB0AABAjBjAB0AABAk+1Bk+1
13 oveq2 j=NAj=AN
14 oveq2 j=NBj=BN
15 13 14 breq12d j=NAjBjANBN
16 15 imbi2d j=NAB0AABAjBjAB0AABANBN
17 recn AA
18 recn BB
19 exp0 AA0=1
20 19 adantr ABA0=1
21 1le1 11
22 20 21 eqbrtrdi ABA01
23 exp0 BB0=1
24 23 adantl ABB0=1
25 22 24 breqtrrd ABA0B0
26 17 18 25 syl2an ABA0B0
27 26 adantr AB0AABA0B0
28 reexpcl Ak0Ak
29 28 ad4ant14 AB0AABk0Ak
30 simplll AB0AABk0A
31 simpr AB0AABk0k0
32 simplrl AB0AABk00A
33 expge0 Ak00A0Ak
34 30 31 32 33 syl3anc AB0AABk00Ak
35 reexpcl Bk0Bk
36 35 ad4ant24 AB0AABk0Bk
37 29 34 36 jca31 AB0AABk0Ak0AkBk
38 simpl ABA
39 simpl 0AAB0A
40 38 39 anim12i AB0AABA0A
41 40 adantr AB0AABk0A0A
42 simpllr AB0AABk0B
43 37 41 42 jca32 AB0AABk0Ak0AkBkA0AB
44 43 adantr AB0AABk0AkBkAk0AkBkA0AB
45 simplrr AB0AABk0AB
46 45 anim1ci AB0AABk0AkBkAkBkAB
47 lemul12a Ak0AkBkA0ABAkBkABAkABkB
48 44 46 47 sylc AB0AABk0AkBkAkABkB
49 expp1 Ak0Ak+1=AkA
50 17 49 sylan Ak0Ak+1=AkA
51 50 ad5ant14 AB0AABk0AkBkAk+1=AkA
52 expp1 Bk0Bk+1=BkB
53 18 52 sylan Bk0Bk+1=BkB
54 53 ad5ant24 AB0AABk0AkBkBk+1=BkB
55 48 51 54 3brtr4d AB0AABk0AkBkAk+1Bk+1
56 55 ex AB0AABk0AkBkAk+1Bk+1
57 56 expcom k0AB0AABAkBkAk+1Bk+1
58 57 a2d k0AB0AABAkBkAB0AABAk+1Bk+1
59 4 8 12 16 27 58 nn0ind N0AB0AABANBN
60 59 exp4c N0AB0AABANBN
61 60 com3l ABN00AABANBN
62 61 3imp1 ABN00AABANBN