Metamath Proof Explorer


Theorem leoprf2

Description: The ordering relation for operators is reflexive. (Contributed by NM, 24-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leoprf2 T:TopT

Proof

Step Hyp Ref Expression
1 hodid T:T-opT=0hop
2 0hmop 0hopHrmOp
3 1 2 eqeltrdi T:T-opTHrmOp
4 0le0 00
5 1 adantr T:xT-opT=0hop
6 5 fveq1d T:xT-opTx=0hopx
7 ho0val x0hopx=0
8 7 adantl T:x0hopx=0
9 6 8 eqtrd T:xT-opTx=0
10 9 oveq1d T:xT-opTxihx=0ihx
11 hi01 x0ihx=0
12 11 adantl T:x0ihx=0
13 10 12 eqtr2d T:x0=T-opTxihx
14 4 13 breqtrid T:x0T-opTxihx
15 14 ralrimiva T:x0T-opTxihx
16 ax-hilex V
17 fex T:VTV
18 16 17 mpan2 T:TV
19 leopg TVTVTopTT-opTHrmOpx0T-opTxihx
20 18 18 19 syl2anc T:TopTT-opTHrmOpx0T-opTxihx
21 3 15 20 mpbir2and T:TopT