Metamath Proof Explorer


Theorem leoprf2

Description: The ordering relation for operators is reflexive. (Contributed by NM, 24-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leoprf2 T : T op T

Proof

Step Hyp Ref Expression
1 hodid T : T - op T = 0 hop
2 0hmop 0 hop HrmOp
3 1 2 eqeltrdi T : T - op T HrmOp
4 0le0 0 0
5 1 adantr T : x T - op T = 0 hop
6 5 fveq1d T : x T - op T x = 0 hop x
7 ho0val x 0 hop x = 0
8 7 adantl T : x 0 hop x = 0
9 6 8 eqtrd T : x T - op T x = 0
10 9 oveq1d T : x T - op T x ih x = 0 ih x
11 hi01 x 0 ih x = 0
12 11 adantl T : x 0 ih x = 0
13 10 12 eqtr2d T : x 0 = T - op T x ih x
14 4 13 breqtrid T : x 0 T - op T x ih x
15 14 ralrimiva T : x 0 T - op T x ih x
16 ax-hilex V
17 fex T : V T V
18 16 17 mpan2 T : T V
19 leopg T V T V T op T T - op T HrmOp x 0 T - op T x ih x
20 18 18 19 syl2anc T : T op T T - op T HrmOp x 0 T - op T x ih x
21 3 15 20 mpbir2and T : T op T