Description: The ordering relation for operators is reflexive. (Contributed by NM, 24-Jul-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | leoprf2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hodid | |
|
2 | 0hmop | |
|
3 | 1 2 | eqeltrdi | |
4 | 0le0 | |
|
5 | 1 | adantr | |
6 | 5 | fveq1d | |
7 | ho0val | |
|
8 | 7 | adantl | |
9 | 6 8 | eqtrd | |
10 | 9 | oveq1d | |
11 | hi01 | |
|
12 | 11 | adantl | |
13 | 10 12 | eqtr2d | |
14 | 4 13 | breqtrid | |
15 | 14 | ralrimiva | |
16 | ax-hilex | |
|
17 | fex | |
|
18 | 16 17 | mpan2 | |
19 | leopg | |
|
20 | 18 18 19 | syl2anc | |
21 | 3 15 20 | mpbir2and | |