Metamath Proof Explorer


Theorem lhpat3

Description: There is only one atom under both P .\/ Q and co-atom W . (Contributed by NM, 21-Nov-2012)

Ref Expression
Hypotheses lhpat.l ˙=K
lhpat.j ˙=joinK
lhpat.m ˙=meetK
lhpat.a A=AtomsK
lhpat.h H=LHypK
lhpat2.r R=P˙Q˙W
Assertion lhpat3 KHLWHPA¬P˙WQASAPQS˙P˙Q¬S˙WSR

Proof

Step Hyp Ref Expression
1 lhpat.l ˙=K
2 lhpat.j ˙=joinK
3 lhpat.m ˙=meetK
4 lhpat.a A=AtomsK
5 lhpat.h H=LHypK
6 lhpat2.r R=P˙Q˙W
7 simpl3r KHLWHPA¬P˙WQASAPQS˙P˙QS˙WS˙P˙Q
8 simpr KHLWHPA¬P˙WQASAPQS˙P˙QS˙WS˙W
9 simp1ll KHLWHPA¬P˙WQASAPQS˙P˙QKHL
10 9 hllatd KHLWHPA¬P˙WQASAPQS˙P˙QKLat
11 simp2r KHLWHPA¬P˙WQASAPQS˙P˙QSA
12 eqid BaseK=BaseK
13 12 4 atbase SASBaseK
14 11 13 syl KHLWHPA¬P˙WQASAPQS˙P˙QSBaseK
15 simp1rl KHLWHPA¬P˙WQASAPQS˙P˙QPA
16 simp2l KHLWHPA¬P˙WQASAPQS˙P˙QQA
17 12 2 4 hlatjcl KHLPAQAP˙QBaseK
18 9 15 16 17 syl3anc KHLWHPA¬P˙WQASAPQS˙P˙QP˙QBaseK
19 simp1lr KHLWHPA¬P˙WQASAPQS˙P˙QWH
20 12 5 lhpbase WHWBaseK
21 19 20 syl KHLWHPA¬P˙WQASAPQS˙P˙QWBaseK
22 12 1 3 latlem12 KLatSBaseKP˙QBaseKWBaseKS˙P˙QS˙WS˙P˙Q˙W
23 10 14 18 21 22 syl13anc KHLWHPA¬P˙WQASAPQS˙P˙QS˙P˙QS˙WS˙P˙Q˙W
24 23 adantr KHLWHPA¬P˙WQASAPQS˙P˙QS˙WS˙P˙QS˙WS˙P˙Q˙W
25 7 8 24 mpbi2and KHLWHPA¬P˙WQASAPQS˙P˙QS˙WS˙P˙Q˙W
26 25 6 breqtrrdi KHLWHPA¬P˙WQASAPQS˙P˙QS˙WS˙R
27 9 adantr KHLWHPA¬P˙WQASAPQS˙P˙QS˙WKHL
28 hlatl KHLKAtLat
29 27 28 syl KHLWHPA¬P˙WQASAPQS˙P˙QS˙WKAtLat
30 simpl2r KHLWHPA¬P˙WQASAPQS˙P˙QS˙WSA
31 simpl1l KHLWHPA¬P˙WQASAPQS˙P˙QS˙WKHLWH
32 simpl1r KHLWHPA¬P˙WQASAPQS˙P˙QS˙WPA¬P˙W
33 simpl2l KHLWHPA¬P˙WQASAPQS˙P˙QS˙WQA
34 simpl3l KHLWHPA¬P˙WQASAPQS˙P˙QS˙WPQ
35 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQRA
36 31 32 33 34 35 syl112anc KHLWHPA¬P˙WQASAPQS˙P˙QS˙WRA
37 1 4 atcmp KAtLatSARAS˙RS=R
38 29 30 36 37 syl3anc KHLWHPA¬P˙WQASAPQS˙P˙QS˙WS˙RS=R
39 26 38 mpbid KHLWHPA¬P˙WQASAPQS˙P˙QS˙WS=R
40 39 ex KHLWHPA¬P˙WQASAPQS˙P˙QS˙WS=R
41 12 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
42 10 18 21 41 syl3anc KHLWHPA¬P˙WQASAPQS˙P˙QP˙Q˙W˙W
43 6 42 eqbrtrid KHLWHPA¬P˙WQASAPQS˙P˙QR˙W
44 breq1 S=RS˙WR˙W
45 43 44 syl5ibrcom KHLWHPA¬P˙WQASAPQS˙P˙QS=RS˙W
46 40 45 impbid KHLWHPA¬P˙WQASAPQS˙P˙QS˙WS=R
47 46 necon3bbid KHLWHPA¬P˙WQASAPQS˙P˙Q¬S˙WSR