Metamath Proof Explorer


Theorem lhpmcvr3

Description: Specialization of lhpmcvr2 . TODO: Use this to simplify many uses of ( P .\/ ( X ./\ W ) ) = X to become P .<_ X . (Contributed by NM, 6-Apr-2014)

Ref Expression
Hypotheses lhpmcvr2.b B=BaseK
lhpmcvr2.l ˙=K
lhpmcvr2.j ˙=joinK
lhpmcvr2.m ˙=meetK
lhpmcvr2.a A=AtomsK
lhpmcvr2.h H=LHypK
Assertion lhpmcvr3 KHLWHXB¬X˙WPA¬P˙WP˙XP˙X˙W=X

Proof

Step Hyp Ref Expression
1 lhpmcvr2.b B=BaseK
2 lhpmcvr2.l ˙=K
3 lhpmcvr2.j ˙=joinK
4 lhpmcvr2.m ˙=meetK
5 lhpmcvr2.a A=AtomsK
6 lhpmcvr2.h H=LHypK
7 simpl1l KHLWHXB¬X˙WPA¬P˙WP˙XKHL
8 simpl3l KHLWHXB¬X˙WPA¬P˙WP˙XPA
9 simpl2l KHLWHXB¬X˙WPA¬P˙WP˙XXB
10 simpl1r KHLWHXB¬X˙WPA¬P˙WP˙XWH
11 1 6 lhpbase WHWB
12 10 11 syl KHLWHXB¬X˙WPA¬P˙WP˙XWB
13 simpr KHLWHXB¬X˙WPA¬P˙WP˙XP˙X
14 1 2 3 4 5 atmod3i1 KHLPAXBWBP˙XP˙X˙W=X˙P˙W
15 7 8 9 12 13 14 syl131anc KHLWHXB¬X˙WPA¬P˙WP˙XP˙X˙W=X˙P˙W
16 simpl1 KHLWHXB¬X˙WPA¬P˙WP˙XKHLWH
17 simpl3 KHLWHXB¬X˙WPA¬P˙WP˙XPA¬P˙W
18 eqid 1.K=1.K
19 2 3 18 5 6 lhpjat2 KHLWHPA¬P˙WP˙W=1.K
20 16 17 19 syl2anc KHLWHXB¬X˙WPA¬P˙WP˙XP˙W=1.K
21 20 oveq2d KHLWHXB¬X˙WPA¬P˙WP˙XX˙P˙W=X˙1.K
22 hlol KHLKOL
23 7 22 syl KHLWHXB¬X˙WPA¬P˙WP˙XKOL
24 1 4 18 olm11 KOLXBX˙1.K=X
25 23 9 24 syl2anc KHLWHXB¬X˙WPA¬P˙WP˙XX˙1.K=X
26 15 21 25 3eqtrd KHLWHXB¬X˙WPA¬P˙WP˙XP˙X˙W=X
27 simpl1l KHLWHXB¬X˙WPA¬P˙WP˙X˙W=XKHL
28 27 hllatd KHLWHXB¬X˙WPA¬P˙WP˙X˙W=XKLat
29 simpl3l KHLWHXB¬X˙WPA¬P˙WP˙X˙W=XPA
30 1 5 atbase PAPB
31 29 30 syl KHLWHXB¬X˙WPA¬P˙WP˙X˙W=XPB
32 simpl2l KHLWHXB¬X˙WPA¬P˙WP˙X˙W=XXB
33 simpl1r KHLWHXB¬X˙WPA¬P˙WP˙X˙W=XWH
34 33 11 syl KHLWHXB¬X˙WPA¬P˙WP˙X˙W=XWB
35 1 4 latmcl KLatXBWBX˙WB
36 28 32 34 35 syl3anc KHLWHXB¬X˙WPA¬P˙WP˙X˙W=XX˙WB
37 1 2 3 latlej1 KLatPBX˙WBP˙P˙X˙W
38 28 31 36 37 syl3anc KHLWHXB¬X˙WPA¬P˙WP˙X˙W=XP˙P˙X˙W
39 simpr KHLWHXB¬X˙WPA¬P˙WP˙X˙W=XP˙X˙W=X
40 38 39 breqtrd KHLWHXB¬X˙WPA¬P˙WP˙X˙W=XP˙X
41 26 40 impbida KHLWHXB¬X˙WPA¬P˙WP˙XP˙X˙W=X