Metamath Proof Explorer


Theorem lidlrng

Description: A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l L = LIdeal R
lidlabl.i I = R 𝑠 U
Assertion lidlrng R Ring U L I Rng

Proof

Step Hyp Ref Expression
1 lidlabl.l L = LIdeal R
2 lidlabl.i I = R 𝑠 U
3 1 2 lidlabl R Ring U L I Abel
4 1 2 lidlmsgrp Could not format ( ( R e. Ring /\ U e. L ) -> ( mulGrp ` I ) e. Smgrp ) : No typesetting found for |- ( ( R e. Ring /\ U e. L ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |-
5 simpll R Ring U L a Base I b Base I c Base I R Ring
6 1 2 lidlssbas U L Base I Base R
7 6 sseld U L a Base I a Base R
8 6 sseld U L b Base I b Base R
9 6 sseld U L c Base I c Base R
10 7 8 9 3anim123d U L a Base I b Base I c Base I a Base R b Base R c Base R
11 10 adantl R Ring U L a Base I b Base I c Base I a Base R b Base R c Base R
12 11 imp R Ring U L a Base I b Base I c Base I a Base R b Base R c Base R
13 eqid Base R = Base R
14 eqid + R = + R
15 eqid R = R
16 13 14 15 ringdi R Ring a Base R b Base R c Base R a R b + R c = a R b + R a R c
17 5 12 16 syl2anc R Ring U L a Base I b Base I c Base I a R b + R c = a R b + R a R c
18 13 14 15 ringdir R Ring a Base R b Base R c Base R a + R b R c = a R c + R b R c
19 5 12 18 syl2anc R Ring U L a Base I b Base I c Base I a + R b R c = a R c + R b R c
20 17 19 jca R Ring U L a Base I b Base I c Base I a R b + R c = a R b + R a R c a + R b R c = a R c + R b R c
21 20 ralrimivvva R Ring U L a Base I b Base I c Base I a R b + R c = a R b + R a R c a + R b R c = a R c + R b R c
22 2 15 ressmulr U L R = I
23 22 eqcomd U L I = R
24 eqidd U L a = a
25 2 14 ressplusg U L + R = + I
26 25 eqcomd U L + I = + R
27 26 oveqd U L b + I c = b + R c
28 23 24 27 oveq123d U L a I b + I c = a R b + R c
29 23 oveqd U L a I b = a R b
30 23 oveqd U L a I c = a R c
31 26 29 30 oveq123d U L a I b + I a I c = a R b + R a R c
32 28 31 eqeq12d U L a I b + I c = a I b + I a I c a R b + R c = a R b + R a R c
33 26 oveqd U L a + I b = a + R b
34 eqidd U L c = c
35 23 33 34 oveq123d U L a + I b I c = a + R b R c
36 23 oveqd U L b I c = b R c
37 26 30 36 oveq123d U L a I c + I b I c = a R c + R b R c
38 35 37 eqeq12d U L a + I b I c = a I c + I b I c a + R b R c = a R c + R b R c
39 32 38 anbi12d U L a I b + I c = a I b + I a I c a + I b I c = a I c + I b I c a R b + R c = a R b + R a R c a + R b R c = a R c + R b R c
40 39 adantl R Ring U L a I b + I c = a I b + I a I c a + I b I c = a I c + I b I c a R b + R c = a R b + R a R c a + R b R c = a R c + R b R c
41 40 ralbidv R Ring U L c Base I a I b + I c = a I b + I a I c a + I b I c = a I c + I b I c c Base I a R b + R c = a R b + R a R c a + R b R c = a R c + R b R c
42 41 2ralbidv R Ring U L a Base I b Base I c Base I a I b + I c = a I b + I a I c a + I b I c = a I c + I b I c a Base I b Base I c Base I a R b + R c = a R b + R a R c a + R b R c = a R c + R b R c
43 21 42 mpbird R Ring U L a Base I b Base I c Base I a I b + I c = a I b + I a I c a + I b I c = a I c + I b I c
44 eqid Base I = Base I
45 eqid mulGrp I = mulGrp I
46 eqid + I = + I
47 eqid I = I
48 44 45 46 47 isrng Could not format ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) : No typesetting found for |- ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) with typecode |-
49 3 4 43 48 syl3anbrc R Ring U L I Rng