Metamath Proof Explorer


Theorem liminflelimsupuz

Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminflelimsupuz.1 φM
liminflelimsupuz.2 Z=M
liminflelimsupuz.3 φF:Z*
Assertion liminflelimsupuz φlim infFlim supF

Proof

Step Hyp Ref Expression
1 liminflelimsupuz.1 φM
2 liminflelimsupuz.2 Z=M
3 liminflelimsupuz.3 φF:Z*
4 2 fvexi ZV
5 4 a1i φZV
6 3 5 fexd φFV
7 1 2 uzubico2 φkjk+∞jZ
8 3 ffnd φFFnZ
9 8 adantr φjZFFnZ
10 simpr φjZjZ
11 id jZjZ
12 2 11 uzxrd jZj*
13 pnfxr +∞*
14 13 a1i jZ+∞*
15 12 xrleidd jZjj
16 2 11 uzred jZj
17 ltpnf jj<+∞
18 16 17 syl jZj<+∞
19 12 14 12 15 18 elicod jZjj+∞
20 19 adantl φjZjj+∞
21 9 10 20 fnfvimad φjZFjFj+∞
22 3 ffvelcdmda φjZFj*
23 21 22 elind φjZFjFj+∞*
24 23 ne0d φjZFj+∞*
25 24 ex φjZFj+∞*
26 25 ad2antrr φkjk+∞jZFj+∞*
27 26 reximdva φkjk+∞jZjk+∞Fj+∞*
28 27 ralimdva φkjk+∞jZkjk+∞Fj+∞*
29 7 28 mpd φkjk+∞Fj+∞*
30 6 29 liminflelimsup φlim infFlim supF