Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | liminflelimsupuz.1 | |
|
liminflelimsupuz.2 | |
||
liminflelimsupuz.3 | |
||
Assertion | liminflelimsupuz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminflelimsupuz.1 | |
|
2 | liminflelimsupuz.2 | |
|
3 | liminflelimsupuz.3 | |
|
4 | 2 | fvexi | |
5 | 4 | a1i | |
6 | 3 5 | fexd | |
7 | 1 2 | uzubico2 | |
8 | 3 | ffnd | |
9 | 8 | adantr | |
10 | simpr | |
|
11 | id | |
|
12 | 2 11 | uzxrd | |
13 | pnfxr | |
|
14 | 13 | a1i | |
15 | 12 | xrleidd | |
16 | 2 11 | uzred | |
17 | ltpnf | |
|
18 | 16 17 | syl | |
19 | 12 14 12 15 18 | elicod | |
20 | 19 | adantl | |
21 | 9 10 20 | fnfvimad | |
22 | 3 | ffvelcdmda | |
23 | 21 22 | elind | |
24 | 23 | ne0d | |
25 | 24 | ex | |
26 | 25 | ad2antrr | |
27 | 26 | reximdva | |
28 | 27 | ralimdva | |
29 | 7 28 | mpd | |
30 | 6 29 | liminflelimsup | |