Metamath Proof Explorer


Theorem liminfval5

Description: The inferior limit of an infinite sequence F of extended real numbers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupval5.1 kφ
limsupval5.2 φAV
limsupval5.3 φF:A*
limsupval5.4 G=ksupFk+∞*<
Assertion liminfval5 φlim infF=supranG*<

Proof

Step Hyp Ref Expression
1 limsupval5.1 kφ
2 limsupval5.2 φAV
3 limsupval5.3 φF:A*
4 limsupval5.4 G=ksupFk+∞*<
5 3 2 fexd φFV
6 eqid ksupFk+∞**<=ksupFk+∞**<
7 6 liminfval FVlim infF=supranksupFk+∞**<*<
8 5 7 syl φlim infF=supranksupFk+∞**<*<
9 4 a1i φG=ksupFk+∞*<
10 3 fimassd φFk+∞*
11 df-ss Fk+∞*Fk+∞*=Fk+∞
12 10 11 sylib φFk+∞*=Fk+∞
13 12 eqcomd φFk+∞=Fk+∞*
14 13 adantr φkFk+∞=Fk+∞*
15 14 infeq1d φksupFk+∞*<=supFk+∞**<
16 1 15 mpteq2da φksupFk+∞*<=ksupFk+∞**<
17 9 16 eqtr2d φksupFk+∞**<=G
18 17 rneqd φranksupFk+∞**<=ranG
19 18 supeq1d φsupranksupFk+∞**<*<=supranG*<
20 8 19 eqtrd φlim infF=supranG*<