Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupgt.k | |
|
limsupgt.m | |
||
limsupgt.z | |
||
limsupgt.f | |
||
limsupgt.r | |
||
limsupgt.x | |
||
Assertion | limsupgt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupgt.k | |
|
2 | limsupgt.m | |
|
3 | limsupgt.z | |
|
4 | limsupgt.f | |
|
5 | limsupgt.r | |
|
6 | limsupgt.x | |
|
7 | 2 3 4 5 6 | limsupgtlem | |
8 | nfcv | |
|
9 | 1 8 | nffv | |
10 | nfcv | |
|
11 | nfcv | |
|
12 | 9 10 11 | nfov | |
13 | nfcv | |
|
14 | nfcv | |
|
15 | 14 1 | nffv | |
16 | 12 13 15 | nfbr | |
17 | nfv | |
|
18 | fveq2 | |
|
19 | 18 | oveq1d | |
20 | 19 | breq1d | |
21 | 16 17 20 | cbvralw | |
22 | 21 | a1i | |
23 | fveq2 | |
|
24 | 23 | raleqdv | |
25 | 22 24 | bitrd | |
26 | 25 | cbvrexvw | |
27 | 7 26 | sylib | |