Metamath Proof Explorer


Theorem limsupgt

Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupgt.k _ k F
limsupgt.m φ M
limsupgt.z Z = M
limsupgt.f φ F : Z
limsupgt.r φ lim sup F
limsupgt.x φ X +
Assertion limsupgt φ j Z k j F k X < lim sup F

Proof

Step Hyp Ref Expression
1 limsupgt.k _ k F
2 limsupgt.m φ M
3 limsupgt.z Z = M
4 limsupgt.f φ F : Z
5 limsupgt.r φ lim sup F
6 limsupgt.x φ X +
7 2 3 4 5 6 limsupgtlem φ i Z l i F l X < lim sup F
8 nfcv _ k l
9 1 8 nffv _ k F l
10 nfcv _ k
11 nfcv _ k X
12 9 10 11 nfov _ k F l X
13 nfcv _ k <
14 nfcv _ k lim sup
15 14 1 nffv _ k lim sup F
16 12 13 15 nfbr k F l X < lim sup F
17 nfv l F k X < lim sup F
18 fveq2 l = k F l = F k
19 18 oveq1d l = k F l X = F k X
20 19 breq1d l = k F l X < lim sup F F k X < lim sup F
21 16 17 20 cbvralw l i F l X < lim sup F k i F k X < lim sup F
22 21 a1i i = j l i F l X < lim sup F k i F k X < lim sup F
23 fveq2 i = j i = j
24 23 raleqdv i = j k i F k X < lim sup F k j F k X < lim sup F
25 22 24 bitrd i = j l i F l X < lim sup F k j F k X < lim sup F
26 25 cbvrexvw i Z l i F l X < lim sup F j Z k j F k X < lim sup F
27 7 26 sylib φ j Z k j F k X < lim sup F