Metamath Proof Explorer


Theorem limsupgt

Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupgt.k _kF
limsupgt.m φM
limsupgt.z Z=M
limsupgt.f φF:Z
limsupgt.r φlim supF
limsupgt.x φX+
Assertion limsupgt φjZkjFkX<lim supF

Proof

Step Hyp Ref Expression
1 limsupgt.k _kF
2 limsupgt.m φM
3 limsupgt.z Z=M
4 limsupgt.f φF:Z
5 limsupgt.r φlim supF
6 limsupgt.x φX+
7 2 3 4 5 6 limsupgtlem φiZliFlX<lim supF
8 nfcv _kl
9 1 8 nffv _kFl
10 nfcv _k
11 nfcv _kX
12 9 10 11 nfov _kFlX
13 nfcv _k<
14 nfcv _klim sup
15 14 1 nffv _klim supF
16 12 13 15 nfbr kFlX<lim supF
17 nfv lFkX<lim supF
18 fveq2 l=kFl=Fk
19 18 oveq1d l=kFlX=FkX
20 19 breq1d l=kFlX<lim supFFkX<lim supF
21 16 17 20 cbvralw liFlX<lim supFkiFkX<lim supF
22 21 a1i i=jliFlX<lim supFkiFkX<lim supF
23 fveq2 i=ji=j
24 23 raleqdv i=jkiFkX<lim supFkjFkX<lim supF
25 22 24 bitrd i=jliFlX<lim supFkjFkX<lim supF
26 25 cbvrexvw iZliFlX<lim supFjZkjFkX<lim supF
27 7 26 sylib φjZkjFkX<lim supF