Metamath Proof Explorer


Theorem limsupre3

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre3.1 _jF
limsupre3.2 φA
limsupre3.3 φF:A*
Assertion limsupre3 φlim supFxkjAkjxFjxkjAkjFjx

Proof

Step Hyp Ref Expression
1 limsupre3.1 _jF
2 limsupre3.2 φA
3 limsupre3.3 φF:A*
4 nfcv _lF
5 4 2 3 limsupre3lem φlim supFyilAilyFlyilAilFly
6 breq1 y=xyFlxFl
7 6 anbi2d y=xilyFlilxFl
8 7 rexbidv y=xlAilyFllAilxFl
9 8 ralbidv y=xilAilyFlilAilxFl
10 breq1 i=kilkl
11 10 anbi1d i=kilxFlklxFl
12 11 rexbidv i=klAilxFllAklxFl
13 nfv jkl
14 nfcv _jx
15 nfcv _j
16 nfcv _jl
17 1 16 nffv _jFl
18 14 15 17 nfbr jxFl
19 13 18 nfan jklxFl
20 nfv lkjxFj
21 breq2 l=jklkj
22 fveq2 l=jFl=Fj
23 22 breq2d l=jxFlxFj
24 21 23 anbi12d l=jklxFlkjxFj
25 19 20 24 cbvrexw lAklxFljAkjxFj
26 25 a1i i=klAklxFljAkjxFj
27 12 26 bitrd i=klAilxFljAkjxFj
28 27 cbvralvw ilAilxFlkjAkjxFj
29 28 a1i y=xilAilxFlkjAkjxFj
30 9 29 bitrd y=xilAilyFlkjAkjxFj
31 30 cbvrexvw yilAilyFlxkjAkjxFj
32 breq2 y=xFlyFlx
33 32 imbi2d y=xilFlyilFlx
34 33 ralbidv y=xlAilFlylAilFlx
35 34 rexbidv y=xilAilFlyilAilFlx
36 10 imbi1d i=kilFlxklFlx
37 36 ralbidv i=klAilFlxlAklFlx
38 17 15 14 nfbr jFlx
39 13 38 nfim jklFlx
40 nfv lkjFjx
41 22 breq1d l=jFlxFjx
42 21 41 imbi12d l=jklFlxkjFjx
43 39 40 42 cbvralw lAklFlxjAkjFjx
44 43 a1i i=klAklFlxjAkjFjx
45 37 44 bitrd i=klAilFlxjAkjFjx
46 45 cbvrexvw ilAilFlxkjAkjFjx
47 46 a1i y=xilAilFlxkjAkjFjx
48 35 47 bitrd y=xilAilFlykjAkjFjx
49 48 cbvrexvw yilAilFlyxkjAkjFjx
50 31 49 anbi12i yilAilyFlyilAilFlyxkjAkjxFjxkjAkjFjx
51 50 a1i φyilAilyFlyilAilFlyxkjAkjxFjxkjAkjFjx
52 5 51 bitrd φlim supFxkjAkjxFjxkjAkjFjx