Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupre3.1 | |
|
limsupre3.2 | |
||
limsupre3.3 | |
||
Assertion | limsupre3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupre3.1 | |
|
2 | limsupre3.2 | |
|
3 | limsupre3.3 | |
|
4 | nfcv | |
|
5 | 4 2 3 | limsupre3lem | |
6 | breq1 | |
|
7 | 6 | anbi2d | |
8 | 7 | rexbidv | |
9 | 8 | ralbidv | |
10 | breq1 | |
|
11 | 10 | anbi1d | |
12 | 11 | rexbidv | |
13 | nfv | |
|
14 | nfcv | |
|
15 | nfcv | |
|
16 | nfcv | |
|
17 | 1 16 | nffv | |
18 | 14 15 17 | nfbr | |
19 | 13 18 | nfan | |
20 | nfv | |
|
21 | breq2 | |
|
22 | fveq2 | |
|
23 | 22 | breq2d | |
24 | 21 23 | anbi12d | |
25 | 19 20 24 | cbvrexw | |
26 | 25 | a1i | |
27 | 12 26 | bitrd | |
28 | 27 | cbvralvw | |
29 | 28 | a1i | |
30 | 9 29 | bitrd | |
31 | 30 | cbvrexvw | |
32 | breq2 | |
|
33 | 32 | imbi2d | |
34 | 33 | ralbidv | |
35 | 34 | rexbidv | |
36 | 10 | imbi1d | |
37 | 36 | ralbidv | |
38 | 17 15 14 | nfbr | |
39 | 13 38 | nfim | |
40 | nfv | |
|
41 | 22 | breq1d | |
42 | 21 41 | imbi12d | |
43 | 39 40 42 | cbvralw | |
44 | 43 | a1i | |
45 | 37 44 | bitrd | |
46 | 45 | cbvrexvw | |
47 | 46 | a1i | |
48 | 35 47 | bitrd | |
49 | 48 | cbvrexvw | |
50 | 31 49 | anbi12i | |
51 | 50 | a1i | |
52 | 5 51 | bitrd | |