Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupre3uz.1 | |
|
limsupre3uz.2 | |
||
limsupre3uz.3 | |
||
limsupre3uz.4 | |
||
Assertion | limsupre3uz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupre3uz.1 | |
|
2 | limsupre3uz.2 | |
|
3 | limsupre3uz.3 | |
|
4 | limsupre3uz.4 | |
|
5 | nfcv | |
|
6 | 5 2 3 4 | limsupre3uzlem | |
7 | breq1 | |
|
8 | 7 | rexbidv | |
9 | 8 | ralbidv | |
10 | fveq2 | |
|
11 | 10 | rexeqdv | |
12 | nfcv | |
|
13 | nfcv | |
|
14 | nfcv | |
|
15 | 1 14 | nffv | |
16 | 12 13 15 | nfbr | |
17 | nfv | |
|
18 | fveq2 | |
|
19 | 18 | breq2d | |
20 | 16 17 19 | cbvrexw | |
21 | 20 | a1i | |
22 | 11 21 | bitrd | |
23 | 22 | cbvralvw | |
24 | 23 | a1i | |
25 | 9 24 | bitrd | |
26 | 25 | cbvrexvw | |
27 | breq2 | |
|
28 | 27 | ralbidv | |
29 | 28 | rexbidv | |
30 | 10 | raleqdv | |
31 | 15 13 12 | nfbr | |
32 | nfv | |
|
33 | 18 | breq1d | |
34 | 31 32 33 | cbvralw | |
35 | 34 | a1i | |
36 | 30 35 | bitrd | |
37 | 36 | cbvrexvw | |
38 | 37 | a1i | |
39 | 29 38 | bitrd | |
40 | 39 | cbvrexvw | |
41 | 26 40 | anbi12i | |
42 | 41 | a1i | |
43 | 6 42 | bitrd | |