Metamath Proof Explorer


Theorem limsupre3uz

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre3uz.1 _jF
limsupre3uz.2 φM
limsupre3uz.3 Z=M
limsupre3uz.4 φF:Z*
Assertion limsupre3uz φlim supFxkZjkxFjxkZjkFjx

Proof

Step Hyp Ref Expression
1 limsupre3uz.1 _jF
2 limsupre3uz.2 φM
3 limsupre3uz.3 Z=M
4 limsupre3uz.4 φF:Z*
5 nfcv _lF
6 5 2 3 4 limsupre3uzlem φlim supFyiZliyFlyiZliFly
7 breq1 y=xyFlxFl
8 7 rexbidv y=xliyFllixFl
9 8 ralbidv y=xiZliyFliZlixFl
10 fveq2 i=ki=k
11 10 rexeqdv i=klixFllkxFl
12 nfcv _jx
13 nfcv _j
14 nfcv _jl
15 1 14 nffv _jFl
16 12 13 15 nfbr jxFl
17 nfv lxFj
18 fveq2 l=jFl=Fj
19 18 breq2d l=jxFlxFj
20 16 17 19 cbvrexw lkxFljkxFj
21 20 a1i i=klkxFljkxFj
22 11 21 bitrd i=klixFljkxFj
23 22 cbvralvw iZlixFlkZjkxFj
24 23 a1i y=xiZlixFlkZjkxFj
25 9 24 bitrd y=xiZliyFlkZjkxFj
26 25 cbvrexvw yiZliyFlxkZjkxFj
27 breq2 y=xFlyFlx
28 27 ralbidv y=xliFlyliFlx
29 28 rexbidv y=xiZliFlyiZliFlx
30 10 raleqdv i=kliFlxlkFlx
31 15 13 12 nfbr jFlx
32 nfv lFjx
33 18 breq1d l=jFlxFjx
34 31 32 33 cbvralw lkFlxjkFjx
35 34 a1i i=klkFlxjkFjx
36 30 35 bitrd i=kliFlxjkFjx
37 36 cbvrexvw iZliFlxkZjkFjx
38 37 a1i y=xiZliFlxkZjkFjx
39 29 38 bitrd y=xiZliFlykZjkFjx
40 39 cbvrexvw yiZliFlyxkZjkFjx
41 26 40 anbi12i yiZliyFlyiZliFlyxkZjkxFjxkZjkFjx
42 41 a1i φyiZliyFlyiZliFlyxkZjkxFjxkZjkFjx
43 6 42 bitrd φlim supFxkZjkxFjxkZjkFjx