Metamath Proof Explorer


Theorem lkr0f

Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014)

Ref Expression
Hypotheses lkr0f.d D=ScalarW
lkr0f.o 0˙=0D
lkr0f.v V=BaseW
lkr0f.f F=LFnlW
lkr0f.k K=LKerW
Assertion lkr0f WLModGFKG=VG=V×0˙

Proof

Step Hyp Ref Expression
1 lkr0f.d D=ScalarW
2 lkr0f.o 0˙=0D
3 lkr0f.v V=BaseW
4 lkr0f.f F=LFnlW
5 lkr0f.k K=LKerW
6 eqid BaseD=BaseD
7 1 6 3 4 lflf WLModGFG:VBaseD
8 7 ffnd WLModGFGFnV
9 8 adantr WLModGFKG=VGFnV
10 1 2 4 5 lkrval WLModGFKG=G-10˙
11 10 eqeq1d WLModGFKG=VG-10˙=V
12 11 biimpa WLModGFKG=VG-10˙=V
13 2 fvexi 0˙V
14 13 fconst2 G:V0˙G=V×0˙
15 fconst4 G:V0˙GFnVG-10˙=V
16 14 15 bitr3i G=V×0˙GFnVG-10˙=V
17 9 12 16 sylanbrc WLModGFKG=VG=V×0˙
18 17 ex WLModGFKG=VG=V×0˙
19 16 biimpi G=V×0˙GFnVG-10˙=V
20 19 adantl WLModG=V×0˙GFnVG-10˙=V
21 simpr WLModG=V×0˙G=V×0˙
22 eqid LFnlW=LFnlW
23 1 2 3 22 lfl0f WLModV×0˙LFnlW
24 23 adantr WLModG=V×0˙V×0˙LFnlW
25 21 24 eqeltrd WLModG=V×0˙GLFnlW
26 1 2 22 5 lkrval WLModGLFnlWKG=G-10˙
27 25 26 syldan WLModG=V×0˙KG=G-10˙
28 27 eqeq1d WLModG=V×0˙KG=VG-10˙=V
29 ffn G:V0˙GFnV
30 14 29 sylbir G=V×0˙GFnV
31 30 adantl WLModG=V×0˙GFnV
32 31 biantrurd WLModG=V×0˙G-10˙=VGFnVG-10˙=V
33 28 32 bitrd WLModG=V×0˙KG=VGFnVG-10˙=V
34 20 33 mpbird WLModG=V×0˙KG=V
35 34 ex WLModG=V×0˙KG=V
36 35 adantr WLModGFG=V×0˙KG=V
37 18 36 impbid WLModGFKG=VG=V×0˙