Metamath Proof Explorer


Theorem llnexchb2lem

Description: Lemma for llnexchb2 . (Contributed by NM, 17-Nov-2012)

Ref Expression
Hypotheses llnexch.l ˙=K
llnexch.j ˙=joinK
llnexch.m ˙=meetK
llnexch.a A=AtomsK
llnexch.n N=LLinesK
Assertion llnexchb2lem KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙Y=X˙P˙Q

Proof

Step Hyp Ref Expression
1 llnexch.l ˙=K
2 llnexch.j ˙=joinK
3 llnexch.m ˙=meetK
4 llnexch.a A=AtomsK
5 llnexch.n N=LLinesK
6 simpl11 KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QKHL
7 simpl21 KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QPA
8 simpl12 KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QXN
9 eqid BaseK=BaseK
10 9 5 llnbase XNXBaseK
11 8 10 syl KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QXBaseK
12 6 hllatd KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QKLat
13 simpl13 KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QYN
14 9 5 llnbase YNYBaseK
15 13 14 syl KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QYBaseK
16 9 3 latmcl KLatXBaseKYBaseKX˙YBaseK
17 12 11 15 16 syl3anc KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙YBaseK
18 9 1 3 latmle1 KLatXBaseKYBaseKX˙Y˙X
19 12 11 15 18 syl3anc KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙Y˙X
20 9 1 2 3 4 atmod2i2 KHLPAXBaseKX˙YBaseKX˙Y˙XX˙P˙X˙Y=X˙P˙X˙Y
21 6 7 11 17 19 20 syl131anc KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙P˙X˙Y=X˙P˙X˙Y
22 9 4 atbase PAPBaseK
23 7 22 syl KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QPBaseK
24 9 3 latmcom KLatXBaseKPBaseKX˙P=P˙X
25 12 11 23 24 syl3anc KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙P=P˙X
26 simpl23 KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙Q¬P˙X
27 hlatl KHLKAtLat
28 6 27 syl KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QKAtLat
29 eqid 0.K=0.K
30 9 1 3 29 4 atnle KAtLatPAXBaseK¬P˙XP˙X=0.K
31 28 7 11 30 syl3anc KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙Q¬P˙XP˙X=0.K
32 26 31 mpbid KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QP˙X=0.K
33 25 32 eqtrd KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙P=0.K
34 33 oveq1d KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙P˙X˙Y=0.K˙X˙Y
35 simpr KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙Y˙P˙Q
36 hlcvl KHLKCvLat
37 6 36 syl KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QKCvLat
38 simpl3 KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙YA
39 simpl22 KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QQA
40 breq1 P=X˙YP˙XX˙Y˙X
41 19 40 syl5ibrcom KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QP=X˙YP˙X
42 41 necon3bd KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙Q¬P˙XPX˙Y
43 26 42 mpd KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QPX˙Y
44 43 necomd KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙YP
45 1 2 4 cvlatexchb1 KCvLatX˙YAQAPAX˙YPX˙Y˙P˙QP˙X˙Y=P˙Q
46 37 38 39 7 44 45 syl131anc KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙Y˙P˙QP˙X˙Y=P˙Q
47 35 46 mpbid KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QP˙X˙Y=P˙Q
48 47 oveq2d KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙P˙X˙Y=X˙P˙Q
49 21 34 48 3eqtr3rd KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙P˙Q=0.K˙X˙Y
50 hlol KHLKOL
51 6 50 syl KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QKOL
52 9 2 29 olj02 KOLX˙YBaseK0.K˙X˙Y=X˙Y
53 51 17 52 syl2anc KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙Q0.K˙X˙Y=X˙Y
54 49 53 eqtr2d KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙Y=X˙P˙Q
55 54 ex KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙Y=X˙P˙Q
56 simp11 KHLXNYNPAQA¬P˙XX˙YAKHL
57 56 hllatd KHLXNYNPAQA¬P˙XX˙YAKLat
58 simp12 KHLXNYNPAQA¬P˙XX˙YAXN
59 58 10 syl KHLXNYNPAQA¬P˙XX˙YAXBaseK
60 simp21 KHLXNYNPAQA¬P˙XX˙YAPA
61 simp22 KHLXNYNPAQA¬P˙XX˙YAQA
62 9 2 4 hlatjcl KHLPAQAP˙QBaseK
63 56 60 61 62 syl3anc KHLXNYNPAQA¬P˙XX˙YAP˙QBaseK
64 9 1 3 latmle2 KLatXBaseKP˙QBaseKX˙P˙Q˙P˙Q
65 57 59 63 64 syl3anc KHLXNYNPAQA¬P˙XX˙YAX˙P˙Q˙P˙Q
66 breq1 X˙Y=X˙P˙QX˙Y˙P˙QX˙P˙Q˙P˙Q
67 65 66 syl5ibrcom KHLXNYNPAQA¬P˙XX˙YAX˙Y=X˙P˙QX˙Y˙P˙Q
68 55 67 impbid KHLXNYNPAQA¬P˙XX˙YAX˙Y˙P˙QX˙Y=X˙P˙Q