Description: If we have a right angle, then the mirror point is the point inversion. (Contributed by Thierry Arnoux, 15-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismid.p | |
|
ismid.d | |
||
ismid.i | |
||
ismid.g | |
||
ismid.1 | |
||
lmif.m | |
||
lmif.l | |
||
lmif.d | |
||
lmicl.1 | |
||
lmimid.s | |
||
lmimid.r | |
||
lmimid.a | |
||
lmimid.b | |
||
lmimid.c | |
||
lmimid.d | |
||
Assertion | lmimid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | |
|
2 | ismid.d | |
|
3 | ismid.i | |
|
4 | ismid.g | |
|
5 | ismid.1 | |
|
6 | lmif.m | |
|
7 | lmif.l | |
|
8 | lmif.d | |
|
9 | lmicl.1 | |
|
10 | lmimid.s | |
|
11 | lmimid.r | |
|
12 | lmimid.a | |
|
13 | lmimid.b | |
|
14 | lmimid.c | |
|
15 | lmimid.d | |
|
16 | 10 | a1i | |
17 | 16 | fveq1d | |
18 | eqid | |
|
19 | 1 7 3 4 8 13 | tglnpt | |
20 | 1 2 3 7 18 4 19 10 14 | mircl | |
21 | 1 2 3 4 5 14 20 18 19 | ismidb | |
22 | 17 21 | mpbid | |
23 | 22 13 | eqeltrd | |
24 | df-ne | |
|
25 | 4 | adantr | |
26 | 8 | adantr | |
27 | 14 | adantr | |
28 | 20 | adantr | |
29 | simpr | |
|
30 | 1 3 7 25 27 28 29 | tgelrnln | |
31 | 13 | adantr | |
32 | 19 | adantr | |
33 | 1 2 3 4 5 14 20 | midbtwn | |
34 | 22 33 | eqeltrrd | |
35 | 34 | adantr | |
36 | 1 3 7 25 27 28 32 29 35 | btwnlng1 | |
37 | 31 36 | elind | |
38 | 12 | adantr | |
39 | 1 3 7 25 27 28 29 | tglinerflx1 | |
40 | 15 | adantr | |
41 | 1 2 3 7 18 4 19 10 14 | mirinv | |
42 | eqcom | |
|
43 | 41 42 | bitrdi | |
44 | 43 | biimpar | |
45 | 44 | eqcomd | |
46 | 45 | ex | |
47 | 46 | necon3d | |
48 | 47 | imp | |
49 | 11 | adantr | |
50 | 1 2 3 7 25 26 30 37 38 39 40 48 49 | ragperp | |
51 | 50 | ex | |
52 | 24 51 | biimtrrid | |
53 | 52 | orrd | |
54 | 53 | orcomd | |
55 | 1 2 3 4 5 6 7 8 14 20 | islmib | |
56 | 23 54 55 | mpbir2and | |
57 | 56 | eqcomd | |