| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
|
| 2 |
|
ismid.d |
|
| 3 |
|
ismid.i |
|
| 4 |
|
ismid.g |
|
| 5 |
|
ismid.1 |
|
| 6 |
|
lmif.m |
|
| 7 |
|
lmif.l |
|
| 8 |
|
lmif.d |
|
| 9 |
|
lmicl.1 |
|
| 10 |
|
lmimid.s |
|
| 11 |
|
lmimid.r |
|
| 12 |
|
lmimid.a |
|
| 13 |
|
lmimid.b |
|
| 14 |
|
lmimid.c |
|
| 15 |
|
lmimid.d |
|
| 16 |
10
|
a1i |
|
| 17 |
16
|
fveq1d |
|
| 18 |
|
eqid |
|
| 19 |
1 7 3 4 8 13
|
tglnpt |
|
| 20 |
1 2 3 7 18 4 19 10 14
|
mircl |
|
| 21 |
1 2 3 4 5 14 20 18 19
|
ismidb |
|
| 22 |
17 21
|
mpbid |
|
| 23 |
22 13
|
eqeltrd |
|
| 24 |
|
df-ne |
|
| 25 |
4
|
adantr |
|
| 26 |
8
|
adantr |
|
| 27 |
14
|
adantr |
|
| 28 |
20
|
adantr |
|
| 29 |
|
simpr |
|
| 30 |
1 3 7 25 27 28 29
|
tgelrnln |
|
| 31 |
13
|
adantr |
|
| 32 |
19
|
adantr |
|
| 33 |
1 2 3 4 5 14 20
|
midbtwn |
|
| 34 |
22 33
|
eqeltrrd |
|
| 35 |
34
|
adantr |
|
| 36 |
1 3 7 25 27 28 32 29 35
|
btwnlng1 |
|
| 37 |
31 36
|
elind |
|
| 38 |
12
|
adantr |
|
| 39 |
1 3 7 25 27 28 29
|
tglinerflx1 |
|
| 40 |
15
|
adantr |
|
| 41 |
1 2 3 7 18 4 19 10 14
|
mirinv |
|
| 42 |
|
eqcom |
|
| 43 |
41 42
|
bitrdi |
|
| 44 |
43
|
biimpar |
|
| 45 |
44
|
eqcomd |
|
| 46 |
45
|
ex |
|
| 47 |
46
|
necon3d |
|
| 48 |
47
|
imp |
|
| 49 |
11
|
adantr |
|
| 50 |
1 2 3 7 25 26 30 37 38 39 40 48 49
|
ragperp |
|
| 51 |
50
|
ex |
|
| 52 |
24 51
|
biimtrrid |
|
| 53 |
52
|
orrd |
|
| 54 |
53
|
orcomd |
|
| 55 |
1 2 3 4 5 6 7 8 14 20
|
islmib |
|
| 56 |
23 54 55
|
mpbir2and |
|
| 57 |
56
|
eqcomd |
|