Metamath Proof Explorer


Theorem log2ublem3

Description: Lemma for log2ub . In decimal, this is a proof that the first four terms of the series for log 2 is less than 5 3 0 5 6 / 7 6 5 4 5 . (Contributed by Mario Carneiro, 17-Apr-2015) (Proof shortened by AV, 15-Sep-2021)

Ref Expression
Assertion log2ublem3 3757n=03232n+19n53056

Proof

Step Hyp Ref Expression
1 0le0 00
2 risefall0lem 001=
3 2 sumeq1i n=001232n+19n=n232n+19n
4 sum0 n232n+19n=0
5 3 4 eqtri n=001232n+19n=0
6 5 oveq2i 3757n=001232n+19n=37570
7 3cn 3
8 7nn0 70
9 expcl 37037
10 7 8 9 mp2an 37
11 5cn 5
12 7cn 7
13 11 12 mulcli 57
14 10 13 mulcli 3757
15 14 mul01i 37570=0
16 6 15 eqtri 3757n=001232n+19n=0
17 2cn 2
18 17 mul01i 20=0
19 1 16 18 3brtr4i 3757n=001232n+19n20
20 0nn0 00
21 2nn0 20
22 5nn0 50
23 21 22 deccl 250
24 23 22 deccl 2550
25 1nn0 10
26 24 25 deccl 25510
27 26 22 deccl 255150
28 eqid 01=01
29 27 nn0cni 25515
30 29 addlidi 0+25515=25515
31 3nn0 30
32 7 addridi 3+0=3
33 29 mullidi 125515=25515
34 18 oveq1i 20+1=0+1
35 0p1e1 0+1=1
36 34 35 eqtri 20+1=1
37 36 oveq1i 20+125515=125515
38 22 8 nn0mulcli 570
39 8 21 deccl 720
40 9nn0 90
41 2p1e3 2+1=3
42 8nn0 80
43 1p1e2 1+1=2
44 9cn 9
45 exp1 991=9
46 44 45 ax-mp 91=9
47 46 oveq1i 919=99
48 9t9e81 99=81
49 47 48 eqtri 919=81
50 40 25 43 49 numexpp1 92=81
51 8cn 8
52 9t8e72 98=72
53 44 51 52 mulcomli 89=72
54 44 mullidi 19=9
55 40 42 25 50 53 54 decmul1 929=729
56 40 21 41 55 numexpp1 93=729
57 31 25 deccl 310
58 eqid 72=72
59 eqid 31=31
60 7t5e35 75=35
61 12 11 60 mulcomli 57=35
62 7p3e10 7+3=10
63 12 7 62 addcomli 3+7=10
64 ax-1cn 1
65 3p1e4 3+1=4
66 7 64 65 addcomli 1+3=4
67 66 oveq2i 37+1+3=37+4
68 4nn0 40
69 7t3e21 73=21
70 12 7 69 mulcomli 37=21
71 4cn 4
72 4p1e5 4+1=5
73 71 64 72 addcomli 1+4=5
74 21 25 68 70 73 decaddi 37+4=25
75 67 74 eqtri 37+1+3=25
76 61 oveq1i 57+0=35+0
77 31 22 deccl 350
78 77 nn0cni 35
79 78 addridi 35+0=35
80 76 79 eqtri 57+0=35
81 31 22 25 20 61 63 8 22 31 75 80 decmac 577+3+7=255
82 25 dec0h 1=01
83 3t2e6 32=6
84 83 35 oveq12i 32+0+1=6+1
85 6p1e7 6+1=7
86 84 85 eqtri 32+0+1=7
87 5t2e10 52=10
88 25 20 35 87 decsuc 52+1=11
89 31 22 20 25 61 82 21 25 25 86 88 decmac 572+1=71
90 8 21 31 25 58 59 38 25 8 81 89 decma2c 5772+31=2551
91 9t3e27 93=27
92 44 7 91 mulcomli 39=27
93 7p4e11 7+4=11
94 21 8 68 92 41 25 93 decaddci 39+4=31
95 9t5e45 95=45
96 44 11 95 mulcomli 59=45
97 40 31 22 61 22 68 94 96 decmul1c 579=315
98 38 39 40 56 22 57 90 97 decmul2c 5793=25515
99 33 37 98 3eqtr4ri 5793=20+125515
100 19 20 27 20 28 30 31 32 99 log2ublem2 3757n=00232n+19n225515
101 40 68 deccl 940
102 101 22 deccl 9450
103 1m1e0 11=0
104 eqid 25515=25515
105 eqid 945=945
106 6nn0 60
107 21 106 deccl 260
108 107 68 deccl 2640
109 5p1e6 5+1=6
110 eqid 2551=2551
111 eqid 94=94
112 eqid 255=255
113 eqid 25=25
114 21 22 109 113 decsuc 25+1=26
115 9p5e14 9+5=14
116 44 11 115 addcomli 5+9=14
117 23 22 40 112 114 68 116 decaddci 255+9=264
118 24 25 40 68 110 111 117 73 decadd 2551+94=2645
119 108 22 109 118 decsuc 2551+94+1=2646
120 5p5e10 5+5=10
121 26 22 101 22 104 105 119 120 decaddc2 25515+945=26460
122 44 sqvali 92=99
123 3t3e9 33=9
124 123 oveq1i 339=99
125 7 7 44 mulassi 339=339
126 122 124 125 3eqtr2i 92=339
127 126 oveq2i 5792=57339
128 7 44 mulcli 39
129 13 7 128 mul12i 57339=35739
130 21 68 deccl 240
131 eqid 24=24
132 83 41 oveq12i 32+2+1=6+3
133 6p3e9 6+3=9
134 132 133 eqtri 32+2+1=9
135 71 addlidi 0+4=4
136 25 20 68 87 135 decaddi 52+4=14
137 31 22 21 68 61 131 21 68 25 134 136 decmac 572+24=94
138 21 25 31 70 66 decaddi 37+3=24
139 8 31 22 61 22 31 138 61 decmul1c 577=245
140 38 21 8 92 22 130 137 139 decmul2c 5739=945
141 140 oveq2i 35739=3945
142 129 141 eqtri 57339=3945
143 df-3 3=2+1
144 17 mulridi 21=2
145 144 oveq1i 21+1=2+1
146 143 145 eqtr4i 3=21+1
147 146 oveq1i 3945=21+1945
148 127 142 147 3eqtri 5792=21+1945
149 100 27 102 25 103 121 21 41 148 log2ublem2 3757n=01232n+19n226460
150 108 106 deccl 26460
151 150 20 deccl 264600
152 106 31 deccl 630
153 2m1e1 21=1
154 eqid 26460=26460
155 eqid 63=63
156 eqid 2646=2646
157 eqid 264=264
158 107 68 72 157 decsuc 264+1=265
159 6p6e12 6+6=12
160 108 106 106 156 158 21 159 decaddci 2646+6=2652
161 7 addlidi 0+3=3
162 150 20 106 31 154 155 160 161 decadd 26460+63=26523
163 1p2e3 1+2=3
164 46 oveq2i 5791=579
165 11 12 44 mulassi 579=579
166 9t7e63 97=63
167 44 12 166 mulcomli 79=63
168 167 oveq2i 579=563
169 165 168 eqtri 579=563
170 df-5 5=4+1
171 2t2e4 22=4
172 171 oveq1i 22+1=4+1
173 170 172 eqtr4i 5=22+1
174 173 oveq1i 563=22+163
175 164 169 174 3eqtri 5791=22+163
176 149 151 152 21 153 162 25 163 175 log2ublem2 3757n=02232n+19n226523
177 107 22 deccl 2650
178 177 21 deccl 26520
179 178 31 deccl 265230
180 3m1e2 31=2
181 eqid 26523=26523
182 5p3e8 5+3=8
183 11 7 182 addcomli 3+5=8
184 178 31 22 181 183 decaddi 26523+5=26528
185 12 11 mulcli 75
186 185 mulridi 751=75
187 11 12 mulcomi 57=75
188 exp0 990=1
189 44 188 ax-mp 90=1
190 187 189 oveq12i 5790=751
191 7 17 83 mulcomli 23=6
192 191 oveq1i 23+1=6+1
193 df-7 7=6+1
194 192 193 eqtr4i 23+1=7
195 194 oveq1i 23+15=75
196 186 190 195 3eqtr4i 5790=23+15
197 176 179 22 31 180 184 20 161 196 log2ublem2 3757n=03232n+19n226528
198 eqid 26528=26528
199 eqid 2652=2652
200 eqid 265=265
201 00id 0+0=0
202 20 dec0h 0=00
203 201 202 eqtri 0+0=00
204 eqid 26=26
205 35 82 eqtri 0+1=01
206 171 35 oveq12i 22+0+1=4+1
207 206 72 eqtri 22+0+1=5
208 6cn 6
209 6t2e12 62=12
210 208 17 209 mulcomli 26=12
211 25 21 41 210 decsuc 26+1=13
212 21 106 20 25 204 205 21 31 25 207 211 decma2c 226+0+1=53
213 11 17 87 mulcomli 25=10
214 213 oveq1i 25+0=10+0
215 dec10p 10+0=10
216 214 215 eqtri 25+0=10
217 107 22 20 20 200 203 21 20 25 212 216 decma2c 2265+0+0=530
218 22 dec0h 5=05
219 172 72 218 3eqtri 22+1=05
220 177 21 20 25 199 82 21 22 20 217 219 decma2c 22652+1=5305
221 8t2e16 82=16
222 51 17 221 mulcomli 28=16
223 21 178 42 198 106 25 220 222 decmul2c 226528=53056
224 197 223 breqtri 3757n=03232n+19n53056