Metamath Proof Explorer


Theorem lognegb

Description: If a number has imaginary part equal to _pi , then it is on the negative real axis and vice-versa. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Assertion lognegb AA0A+logA=π

Proof

Step Hyp Ref Expression
1 logneg A+logA=logA+iπ
2 1 fveq2d A+logA=logA+iπ
3 relogcl A+logA
4 pire π
5 crim logAπlogA+iπ=π
6 3 4 5 sylancl A+logA+iπ=π
7 2 6 eqtrd A+logA=π
8 negneg AA=A
9 8 adantr AA0A=A
10 9 fveq2d AA0logA=logA
11 10 fveqeq2d AA0logA=πlogA=π
12 7 11 imbitrid AA0A+logA=π
13 logcl AA0logA
14 13 replimd AA0logA=logA+ilogA
15 14 fveq2d AA0elogA=elogA+ilogA
16 eflog AA0elogA=A
17 13 recld AA0logA
18 17 recnd AA0logA
19 ax-icn i
20 13 imcld AA0logA
21 20 recnd AA0logA
22 mulcl ilogAilogA
23 19 21 22 sylancr AA0ilogA
24 efadd logAilogAelogA+ilogA=elogAeilogA
25 18 23 24 syl2anc AA0elogA+ilogA=elogAeilogA
26 15 16 25 3eqtr3d AA0A=elogAeilogA
27 oveq2 logA=πilogA=iπ
28 27 fveq2d logA=πeilogA=eiπ
29 efipi eiπ=1
30 28 29 eqtrdi logA=πeilogA=1
31 30 oveq2d logA=πelogAeilogA=elogA-1
32 31 eqeq2d logA=πA=elogAeilogAA=elogA-1
33 26 32 syl5ibcom AA0logA=πA=elogA-1
34 17 rpefcld AA0elogA+
35 34 rpcnd AA0elogA
36 neg1cn 1
37 mulcom elogA1elogA-1=-1elogA
38 35 36 37 sylancl AA0elogA-1=-1elogA
39 35 mulm1d AA0-1elogA=elogA
40 38 39 eqtrd AA0elogA-1=elogA
41 40 negeqd AA0elogA-1=elogA
42 35 negnegd AA0elogA=elogA
43 41 42 eqtrd AA0elogA-1=elogA
44 43 34 eqeltrd AA0elogA-1+
45 negeq A=elogA-1A=elogA-1
46 45 eleq1d A=elogA-1A+elogA-1+
47 44 46 syl5ibrcom AA0A=elogA-1A+
48 33 47 syld AA0logA=πA+
49 12 48 impbid AA0A+logA=π