Metamath Proof Explorer


Theorem lplnnle2at

Description: A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012)

Ref Expression
Hypotheses lplnnle2at.l ˙=K
lplnnle2at.j ˙=joinK
lplnnle2at.a A=AtomsK
lplnnle2at.p P=LPlanesK
Assertion lplnnle2at KHLXPQARA¬X˙Q˙R

Proof

Step Hyp Ref Expression
1 lplnnle2at.l ˙=K
2 lplnnle2at.j ˙=joinK
3 lplnnle2at.a A=AtomsK
4 lplnnle2at.p P=LPlanesK
5 simpr1 KHLXPQARAXP
6 eqid BaseK=BaseK
7 eqid K=K
8 eqid LLinesK=LLinesK
9 6 7 8 4 islpln KHLXPXBaseKyLLinesKyKX
10 9 adantr KHLXPQARAXPXBaseKyLLinesKyKX
11 5 10 mpbid KHLXPQARAXBaseKyLLinesKyKX
12 11 simprd KHLXPQARAyLLinesKyKX
13 oveq1 Q=RQ˙R=R˙R
14 13 breq2d Q=RX˙Q˙RX˙R˙R
15 14 notbid Q=R¬X˙Q˙R¬X˙R˙R
16 simpl1 KHLXPQARAyLLinesKyKXQRKHL
17 simpl3l KHLXPQARAyLLinesKyKXQRyLLinesK
18 simpl22 KHLXPQARAyLLinesKyKXQRQA
19 simpl23 KHLXPQARAyLLinesKyKXQRRA
20 simpr KHLXPQARAyLLinesKyKXQRQR
21 2 3 8 llni2 KHLQARAQRQ˙RLLinesK
22 16 18 19 20 21 syl31anc KHLXPQARAyLLinesKyKXQRQ˙RLLinesK
23 eqid <K=<K
24 23 8 llnnlt KHLyLLinesKQ˙RLLinesK¬y<KQ˙R
25 16 17 22 24 syl3anc KHLXPQARAyLLinesKyKXQR¬y<KQ˙R
26 6 8 llnbase yLLinesKyBaseK
27 17 26 syl KHLXPQARAyLLinesKyKXQRyBaseK
28 simpl21 KHLXPQARAyLLinesKyKXQRXP
29 6 4 lplnbase XPXBaseK
30 28 29 syl KHLXPQARAyLLinesKyKXQRXBaseK
31 simpl3r KHLXPQARAyLLinesKyKXQRyKX
32 6 23 7 cvrlt KHLyBaseKXBaseKyKXy<KX
33 16 27 30 31 32 syl31anc KHLXPQARAyLLinesKyKXQRy<KX
34 hlpos KHLKPoset
35 16 34 syl KHLXPQARAyLLinesKyKXQRKPoset
36 6 2 3 hlatjcl KHLQARAQ˙RBaseK
37 16 18 19 36 syl3anc KHLXPQARAyLLinesKyKXQRQ˙RBaseK
38 6 1 23 pltletr KPosetyBaseKXBaseKQ˙RBaseKy<KXX˙Q˙Ry<KQ˙R
39 35 27 30 37 38 syl13anc KHLXPQARAyLLinesKyKXQRy<KXX˙Q˙Ry<KQ˙R
40 33 39 mpand KHLXPQARAyLLinesKyKXQRX˙Q˙Ry<KQ˙R
41 25 40 mtod KHLXPQARAyLLinesKyKXQR¬X˙Q˙R
42 simp1 KHLXPQARAyLLinesKyKXKHL
43 simp3l KHLXPQARAyLLinesKyKXyLLinesK
44 simp23 KHLXPQARAyLLinesKyKXRA
45 1 3 8 llnnleat KHLyLLinesKRA¬y˙R
46 42 43 44 45 syl3anc KHLXPQARAyLLinesKyKX¬y˙R
47 43 26 syl KHLXPQARAyLLinesKyKXyBaseK
48 simp21 KHLXPQARAyLLinesKyKXXP
49 48 29 syl KHLXPQARAyLLinesKyKXXBaseK
50 simp3r KHLXPQARAyLLinesKyKXyKX
51 42 47 49 50 32 syl31anc KHLXPQARAyLLinesKyKXy<KX
52 34 3ad2ant1 KHLXPQARAyLLinesKyKXKPoset
53 6 3 atbase RARBaseK
54 44 53 syl KHLXPQARAyLLinesKyKXRBaseK
55 6 1 23 pltletr KPosetyBaseKXBaseKRBaseKy<KXX˙Ry<KR
56 52 47 49 54 55 syl13anc KHLXPQARAyLLinesKyKXy<KXX˙Ry<KR
57 51 56 mpand KHLXPQARAyLLinesKyKXX˙Ry<KR
58 1 23 pltle KHLyLLinesKRAy<KRy˙R
59 42 43 44 58 syl3anc KHLXPQARAyLLinesKyKXy<KRy˙R
60 57 59 syld KHLXPQARAyLLinesKyKXX˙Ry˙R
61 46 60 mtod KHLXPQARAyLLinesKyKX¬X˙R
62 2 3 hlatjidm KHLRAR˙R=R
63 42 44 62 syl2anc KHLXPQARAyLLinesKyKXR˙R=R
64 63 breq2d KHLXPQARAyLLinesKyKXX˙R˙RX˙R
65 61 64 mtbird KHLXPQARAyLLinesKyKX¬X˙R˙R
66 15 41 65 pm2.61ne KHLXPQARAyLLinesKyKX¬X˙Q˙R
67 66 3exp KHLXPQARAyLLinesKyKX¬X˙Q˙R
68 67 exp4a KHLXPQARAyLLinesKyKX¬X˙Q˙R
69 68 imp KHLXPQARAyLLinesKyKX¬X˙Q˙R
70 69 rexlimdv KHLXPQARAyLLinesKyKX¬X˙Q˙R
71 12 70 mpd KHLXPQARA¬X˙Q˙R