Metamath Proof Explorer


Theorem lrold

Description: The union of the left and right options of a surreal make its old set. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion lrold Could not format assertion : No typesetting found for |- ( ( _Left ` A ) u. ( _Right ` A ) ) = ( _Old ` ( bday ` A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 leftval Could not format ( _Left ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x
2 rightval Could not format ( _Right ` A ) = { x e. ( _Old ` ( bday ` A ) ) | A
3 1 2 uneq12i Could not format ( ( _Left ` A ) u. ( _Right ` A ) ) = ( { x e. ( _Old ` ( bday ` A ) ) | x
4 unrab xOldbdayA|x<sAxOldbdayA|A<sx=xOldbdayA|x<sAA<sx
5 3 4 eqtri Could not format ( ( _Left ` A ) u. ( _Right ` A ) ) = { x e. ( _Old ` ( bday ` A ) ) | ( x
6 oldirr ¬AOldbdayA
7 eleq1 x=AxOldbdayAAOldbdayA
8 6 7 mtbiri x=A¬xOldbdayA
9 8 necon2ai xOldbdayAxA
10 9 adantl ANoxOldbdayAxA
11 oldssno OldbdayANo
12 11 sseli xOldbdayAxNo
13 slttrine xNoANoxAx<sAA<sx
14 13 ancoms ANoxNoxAx<sAA<sx
15 12 14 sylan2 ANoxOldbdayAxAx<sAA<sx
16 10 15 mpbid ANoxOldbdayAx<sAA<sx
17 16 rabeqcda ANoxOldbdayA|x<sAA<sx=OldbdayA
18 5 17 eqtrid Could not format ( A e. No -> ( ( _Left ` A ) u. ( _Right ` A ) ) = ( _Old ` ( bday ` A ) ) ) : No typesetting found for |- ( A e. No -> ( ( _Left ` A ) u. ( _Right ` A ) ) = ( _Old ` ( bday ` A ) ) ) with typecode |-
19 un0 =
20 leftf Could not format _Left : No --> ~P No : No typesetting found for |- _Left : No --> ~P No with typecode |-
21 20 fdmi Could not format dom _Left = No : No typesetting found for |- dom _Left = No with typecode |-
22 21 eleq2i Could not format ( A e. dom _Left <-> A e. No ) : No typesetting found for |- ( A e. dom _Left <-> A e. No ) with typecode |-
23 ndmfv Could not format ( -. A e. dom _Left -> ( _Left ` A ) = (/) ) : No typesetting found for |- ( -. A e. dom _Left -> ( _Left ` A ) = (/) ) with typecode |-
24 22 23 sylnbir Could not format ( -. A e. No -> ( _Left ` A ) = (/) ) : No typesetting found for |- ( -. A e. No -> ( _Left ` A ) = (/) ) with typecode |-
25 rightf Could not format _Right : No --> ~P No : No typesetting found for |- _Right : No --> ~P No with typecode |-
26 25 fdmi Could not format dom _Right = No : No typesetting found for |- dom _Right = No with typecode |-
27 26 eleq2i Could not format ( A e. dom _Right <-> A e. No ) : No typesetting found for |- ( A e. dom _Right <-> A e. No ) with typecode |-
28 ndmfv Could not format ( -. A e. dom _Right -> ( _Right ` A ) = (/) ) : No typesetting found for |- ( -. A e. dom _Right -> ( _Right ` A ) = (/) ) with typecode |-
29 27 28 sylnbir Could not format ( -. A e. No -> ( _Right ` A ) = (/) ) : No typesetting found for |- ( -. A e. No -> ( _Right ` A ) = (/) ) with typecode |-
30 24 29 uneq12d Could not format ( -. A e. No -> ( ( _Left ` A ) u. ( _Right ` A ) ) = ( (/) u. (/) ) ) : No typesetting found for |- ( -. A e. No -> ( ( _Left ` A ) u. ( _Right ` A ) ) = ( (/) u. (/) ) ) with typecode |-
31 bdaydm dombday=No
32 31 eleq2i AdombdayANo
33 ndmfv ¬AdombdaybdayA=
34 32 33 sylnbir ¬ANobdayA=
35 34 fveq2d ¬ANoOldbdayA=Old
36 old0 Old=
37 35 36 eqtrdi ¬ANoOldbdayA=
38 19 30 37 3eqtr4a Could not format ( -. A e. No -> ( ( _Left ` A ) u. ( _Right ` A ) ) = ( _Old ` ( bday ` A ) ) ) : No typesetting found for |- ( -. A e. No -> ( ( _Left ` A ) u. ( _Right ` A ) ) = ( _Old ` ( bday ` A ) ) ) with typecode |-
39 18 38 pm2.61i Could not format ( ( _Left ` A ) u. ( _Right ` A ) ) = ( _Old ` ( bday ` A ) ) : No typesetting found for |- ( ( _Left ` A ) u. ( _Right ` A ) ) = ( _Old ` ( bday ` A ) ) with typecode |-