Metamath Proof Explorer


Theorem lrold

Description: The union of the left and right options of a surreal make its old set. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion lrold L A R A = Old bday A

Proof

Step Hyp Ref Expression
1 leftval L A = x Old bday A | x < s A
2 rightval R A = x Old bday A | A < s x
3 1 2 uneq12i L A R A = x Old bday A | x < s A x Old bday A | A < s x
4 unrab x Old bday A | x < s A x Old bday A | A < s x = x Old bday A | x < s A A < s x
5 3 4 eqtri L A R A = x Old bday A | x < s A A < s x
6 oldirr ¬ A Old bday A
7 eleq1 x = A x Old bday A A Old bday A
8 6 7 mtbiri x = A ¬ x Old bday A
9 8 necon2ai x Old bday A x A
10 9 adantl A No x Old bday A x A
11 oldssno Old bday A No
12 11 sseli x Old bday A x No
13 slttrine x No A No x A x < s A A < s x
14 13 ancoms A No x No x A x < s A A < s x
15 12 14 sylan2 A No x Old bday A x A x < s A A < s x
16 10 15 mpbid A No x Old bday A x < s A A < s x
17 16 rabeqcda A No x Old bday A | x < s A A < s x = Old bday A
18 5 17 eqtrid A No L A R A = Old bday A
19 un0 =
20 leftf L : No 𝒫 No
21 20 fdmi dom L = No
22 21 eleq2i A dom L A No
23 ndmfv ¬ A dom L L A =
24 22 23 sylnbir ¬ A No L A =
25 rightf R : No 𝒫 No
26 25 fdmi dom R = No
27 26 eleq2i A dom R A No
28 ndmfv ¬ A dom R R A =
29 27 28 sylnbir ¬ A No R A =
30 24 29 uneq12d ¬ A No L A R A =
31 bdaydm dom bday = No
32 31 eleq2i A dom bday A No
33 ndmfv ¬ A dom bday bday A =
34 32 33 sylnbir ¬ A No bday A =
35 34 fveq2d ¬ A No Old bday A = Old
36 old0 Old =
37 35 36 eqtrdi ¬ A No Old bday A =
38 19 30 37 3eqtr4a ¬ A No L A R A = Old bday A
39 18 38 pm2.61i L A R A = Old bday A