Metamath Proof Explorer


Theorem lsatfixedN

Description: Show equality with the span of the sum of two vectors, one of which ( X ) is fixed in advance. Compare lspfixed . (Contributed by NM, 29-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lsatfixed.v V=BaseW
lsatfixed.p +˙=+W
lsatfixed.o 0˙=0W
lsatfixed.n N=LSpanW
lsatfixed.a A=LSAtomsW
lsatfixed.w φWLVec
lsatfixed.q φQA
lsatfixed.x φXV
lsatfixed.y φYV
lsatfixed.e φQNX
lsatfixed.f φQNY
lsatfixed.g φQNXY
Assertion lsatfixedN φzNY0˙Q=NX+˙z

Proof

Step Hyp Ref Expression
1 lsatfixed.v V=BaseW
2 lsatfixed.p +˙=+W
3 lsatfixed.o 0˙=0W
4 lsatfixed.n N=LSpanW
5 lsatfixed.a A=LSAtomsW
6 lsatfixed.w φWLVec
7 lsatfixed.q φQA
8 lsatfixed.x φXV
9 lsatfixed.y φYV
10 lsatfixed.e φQNX
11 lsatfixed.f φQNY
12 lsatfixed.g φQNXY
13 1 4 3 5 islsat WLVecQAwV0˙Q=Nw
14 6 13 syl φQAwV0˙Q=Nw
15 7 14 mpbid φwV0˙Q=Nw
16 6 3ad2ant1 φwV0˙Q=NwWLVec
17 8 3ad2ant1 φwV0˙Q=NwXV
18 9 3ad2ant1 φwV0˙Q=NwYV
19 simp2 φwV0˙Q=NwwV0˙
20 simp3 φwV0˙Q=NwQ=Nw
21 20 eqcomd φwV0˙Q=NwNw=Q
22 10 3ad2ant1 φwV0˙Q=NwQNX
23 21 22 eqnetrd φwV0˙Q=NwNwNX
24 1 3 4 16 19 17 23 lspsnne1 φwV0˙Q=Nw¬wNX
25 11 3ad2ant1 φwV0˙Q=NwQNY
26 21 25 eqnetrd φwV0˙Q=NwNwNY
27 1 3 4 16 19 18 26 lspsnne1 φwV0˙Q=Nw¬wNY
28 12 3ad2ant1 φwV0˙Q=NwQNXY
29 21 28 eqsstrd φwV0˙Q=NwNwNXY
30 eqid LSubSpW=LSubSpW
31 lveclmod WLVecWLMod
32 6 31 syl φWLMod
33 32 3ad2ant1 φwV0˙Q=NwWLMod
34 1 30 4 32 8 9 lspprcl φNXYLSubSpW
35 34 3ad2ant1 φwV0˙Q=NwNXYLSubSpW
36 19 eldifad φwV0˙Q=NwwV
37 1 30 4 33 35 36 lspsnel5 φwV0˙Q=NwwNXYNwNXY
38 29 37 mpbird φwV0˙Q=NwwNXY
39 1 2 3 4 16 17 18 24 27 38 lspfixed φwV0˙Q=NwzNY0˙wNX+˙z
40 simpl1 φwV0˙Q=NwzNY0˙φ
41 40 6 syl φwV0˙Q=NwzNY0˙WLVec
42 simpl2 φwV0˙Q=NwzNY0˙wV0˙
43 40 32 syl φwV0˙Q=NwzNY0˙WLMod
44 40 8 syl φwV0˙Q=NwzNY0˙XV
45 9 snssd φYV
46 1 4 lspssv WLModYVNYV
47 32 45 46 syl2anc φNYV
48 47 ssdifssd φNY0˙V
49 48 3ad2ant1 φwV0˙Q=NwNY0˙V
50 49 sselda φwV0˙Q=NwzNY0˙zV
51 1 2 lmodvacl WLModXVzVX+˙zV
52 43 44 50 51 syl3anc φwV0˙Q=NwzNY0˙X+˙zV
53 1 3 4 41 42 52 lspsncmp φwV0˙Q=NwzNY0˙NwNX+˙zNw=NX+˙z
54 1 30 4 lspsncl WLModX+˙zVNX+˙zLSubSpW
55 43 52 54 syl2anc φwV0˙Q=NwzNY0˙NX+˙zLSubSpW
56 42 eldifad φwV0˙Q=NwzNY0˙wV
57 1 30 4 43 55 56 lspsnel5 φwV0˙Q=NwzNY0˙wNX+˙zNwNX+˙z
58 simpl3 φwV0˙Q=NwzNY0˙Q=Nw
59 58 eqeq1d φwV0˙Q=NwzNY0˙Q=NX+˙zNw=NX+˙z
60 53 57 59 3bitr4rd φwV0˙Q=NwzNY0˙Q=NX+˙zwNX+˙z
61 60 rexbidva φwV0˙Q=NwzNY0˙Q=NX+˙zzNY0˙wNX+˙z
62 39 61 mpbird φwV0˙Q=NwzNY0˙Q=NX+˙z
63 62 rexlimdv3a φwV0˙Q=NwzNY0˙Q=NX+˙z
64 15 63 mpd φzNY0˙Q=NX+˙z