Metamath Proof Explorer


Theorem lshpnelb

Description: The subspace sum of a hyperplane and the span of an element equals the vector space iff the element is not in the hyperplane. (Contributed by NM, 2-Oct-2014)

Ref Expression
Hypotheses lshpnelb.v V = Base W
lshpnelb.n N = LSpan W
lshpnelb.p ˙ = LSSum W
lshpnelb.h H = LSHyp W
lshpnelb.w φ W LVec
lshpnelb.u φ U H
lshpnelb.x φ X V
Assertion lshpnelb φ ¬ X U U ˙ N X = V

Proof

Step Hyp Ref Expression
1 lshpnelb.v V = Base W
2 lshpnelb.n N = LSpan W
3 lshpnelb.p ˙ = LSSum W
4 lshpnelb.h H = LSHyp W
5 lshpnelb.w φ W LVec
6 lshpnelb.u φ U H
7 lshpnelb.x φ X V
8 eqid LSubSp W = LSubSp W
9 lveclmod W LVec W LMod
10 5 9 syl φ W LMod
11 1 2 8 3 4 10 islshpsm φ U H U LSubSp W U V v V U ˙ N v = V
12 6 11 mpbid φ U LSubSp W U V v V U ˙ N v = V
13 12 simp3d φ v V U ˙ N v = V
14 13 adantr φ ¬ X U v V U ˙ N v = V
15 simp1l φ ¬ X U v V U ˙ N v = V φ
16 simp2 φ ¬ X U v V U ˙ N v = V v V
17 8 lsssssubg W LMod LSubSp W SubGrp W
18 10 17 syl φ LSubSp W SubGrp W
19 8 4 10 6 lshplss φ U LSubSp W
20 18 19 sseldd φ U SubGrp W
21 1 8 2 lspsncl W LMod X V N X LSubSp W
22 10 7 21 syl2anc φ N X LSubSp W
23 18 22 sseldd φ N X SubGrp W
24 3 lsmub1 U SubGrp W N X SubGrp W U U ˙ N X
25 20 23 24 syl2anc φ U U ˙ N X
26 25 adantr φ ¬ X U U U ˙ N X
27 3 lsmub2 U SubGrp W N X SubGrp W N X U ˙ N X
28 20 23 27 syl2anc φ N X U ˙ N X
29 1 2 lspsnid W LMod X V X N X
30 10 7 29 syl2anc φ X N X
31 28 30 sseldd φ X U ˙ N X
32 nelne1 X U ˙ N X ¬ X U U ˙ N X U
33 31 32 sylan φ ¬ X U U ˙ N X U
34 33 necomd φ ¬ X U U U ˙ N X
35 df-pss U U ˙ N X U U ˙ N X U U ˙ N X
36 26 34 35 sylanbrc φ ¬ X U U U ˙ N X
37 36 3ad2ant1 φ ¬ X U v V U ˙ N v = V U U ˙ N X
38 8 3 lsmcl W LMod U LSubSp W N X LSubSp W U ˙ N X LSubSp W
39 10 19 22 38 syl3anc φ U ˙ N X LSubSp W
40 1 8 lssss U ˙ N X LSubSp W U ˙ N X V
41 39 40 syl φ U ˙ N X V
42 41 adantr φ U ˙ N v = V U ˙ N X V
43 simpr φ U ˙ N v = V U ˙ N v = V
44 42 43 sseqtrrd φ U ˙ N v = V U ˙ N X U ˙ N v
45 44 adantlr φ ¬ X U U ˙ N v = V U ˙ N X U ˙ N v
46 45 3adant2 φ ¬ X U v V U ˙ N v = V U ˙ N X U ˙ N v
47 5 adantr φ v V W LVec
48 19 adantr φ v V U LSubSp W
49 39 adantr φ v V U ˙ N X LSubSp W
50 simpr φ v V v V
51 1 8 2 3 47 48 49 50 lsmcv φ v V U U ˙ N X U ˙ N X U ˙ N v U ˙ N X = U ˙ N v
52 15 16 37 46 51 syl211anc φ ¬ X U v V U ˙ N v = V U ˙ N X = U ˙ N v
53 simp3 φ ¬ X U v V U ˙ N v = V U ˙ N v = V
54 52 53 eqtrd φ ¬ X U v V U ˙ N v = V U ˙ N X = V
55 54 rexlimdv3a φ ¬ X U v V U ˙ N v = V U ˙ N X = V
56 14 55 mpd φ ¬ X U U ˙ N X = V
57 10 adantr φ U ˙ N X = V W LMod
58 6 adantr φ U ˙ N X = V U H
59 7 adantr φ U ˙ N X = V X V
60 simpr φ U ˙ N X = V U ˙ N X = V
61 1 2 3 4 57 58 59 60 lshpnel φ U ˙ N X = V ¬ X U
62 56 61 impbida φ ¬ X U U ˙ N X = V