| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmelvalm.m |  | 
						
							| 2 |  | lsmelvalm.p |  | 
						
							| 3 |  | lsmelvalm.t |  | 
						
							| 4 |  | lsmelvalm.u |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 5 2 | lsmelval |  | 
						
							| 7 | 3 4 6 | syl2anc |  | 
						
							| 8 | 4 | adantr |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 9 | subginvcl |  | 
						
							| 11 | 8 10 | sylan |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | subgrcl |  | 
						
							| 14 | 3 13 | syl |  | 
						
							| 15 | 14 | ad2antrr |  | 
						
							| 16 | 12 | subgss |  | 
						
							| 17 | 3 16 | syl |  | 
						
							| 18 | 17 | sselda |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 12 | subgss |  | 
						
							| 21 | 8 20 | syl |  | 
						
							| 22 | 21 | sselda |  | 
						
							| 23 | 12 5 1 9 15 19 22 | grpsubinv |  | 
						
							| 24 | 23 | eqcomd |  | 
						
							| 25 |  | oveq2 |  | 
						
							| 26 | 25 | rspceeqv |  | 
						
							| 27 | 11 24 26 | syl2anc |  | 
						
							| 28 |  | eqeq1 |  | 
						
							| 29 | 28 | rexbidv |  | 
						
							| 30 | 27 29 | syl5ibrcom |  | 
						
							| 31 | 30 | rexlimdva |  | 
						
							| 32 | 9 | subginvcl |  | 
						
							| 33 | 8 32 | sylan |  | 
						
							| 34 | 18 | adantr |  | 
						
							| 35 | 21 | sselda |  | 
						
							| 36 | 12 5 9 1 | grpsubval |  | 
						
							| 37 | 34 35 36 | syl2anc |  | 
						
							| 38 |  | oveq2 |  | 
						
							| 39 | 38 | rspceeqv |  | 
						
							| 40 | 33 37 39 | syl2anc |  | 
						
							| 41 |  | eqeq1 |  | 
						
							| 42 | 41 | rexbidv |  | 
						
							| 43 | 40 42 | syl5ibrcom |  | 
						
							| 44 | 43 | rexlimdva |  | 
						
							| 45 | 31 44 | impbid |  | 
						
							| 46 | 45 | rexbidva |  | 
						
							| 47 | 7 46 | bitrd |  |