Metamath Proof Explorer


Theorem lspindp5

Description: Obtain an independent vector set U , X , Y from a vector U dependent on X and Z and another independent set Z , X , Y . (Here we don't show the ( N{ X } ) =/= ( N{ Y } ) part of the independence, which passes straight through. We also don't show nonzero vector requirements that are redundant for this theorem. Different orderings can be obtained using lspexch and prcom .) (Contributed by NM, 4-May-2015)

Ref Expression
Hypotheses lspindp5.v V=BaseW
lspindp5.n N=LSpanW
lspindp5.w φWLVec
lspindp5.y φXV
lspindp5.x φYV
lspindp5.u φUV
lspindp5.e φZNXU
lspindp5.m φ¬ZNXY
Assertion lspindp5 φ¬UNXY

Proof

Step Hyp Ref Expression
1 lspindp5.v V=BaseW
2 lspindp5.n N=LSpanW
3 lspindp5.w φWLVec
4 lspindp5.y φXV
5 lspindp5.x φYV
6 lspindp5.u φUV
7 lspindp5.e φZNXU
8 lspindp5.m φ¬ZNXY
9 ssel NXUNXYZNXUZNXY
10 7 9 syl5com φNXUNXYZNXY
11 8 10 mtod φ¬NXUNXY
12 lveclmod WLVecWLMod
13 3 12 syl φWLMod
14 prssi XVYVXYV
15 4 5 14 syl2anc φXYV
16 snsspr1 XXY
17 16 a1i φXXY
18 1 2 lspss WLModXYVXXYNXNXY
19 13 15 17 18 syl3anc φNXNXY
20 19 biantrurd φNUNXYNXNXYNUNXY
21 eqid LSubSpW=LSubSpW
22 21 lsssssubg WLModLSubSpWSubGrpW
23 13 22 syl φLSubSpWSubGrpW
24 1 21 2 lspsncl WLModXVNXLSubSpW
25 13 4 24 syl2anc φNXLSubSpW
26 23 25 sseldd φNXSubGrpW
27 1 21 2 lspsncl WLModUVNULSubSpW
28 13 6 27 syl2anc φNULSubSpW
29 23 28 sseldd φNUSubGrpW
30 1 21 2 13 4 5 lspprcl φNXYLSubSpW
31 23 30 sseldd φNXYSubGrpW
32 eqid LSSumW=LSSumW
33 32 lsmlub NXSubGrpWNUSubGrpWNXYSubGrpWNXNXYNUNXYNXLSSumWNUNXY
34 26 29 31 33 syl3anc φNXNXYNUNXYNXLSSumWNUNXY
35 20 34 bitrd φNUNXYNXLSSumWNUNXY
36 1 21 2 13 30 6 lspsnel5 φUNXYNUNXY
37 1 2 32 13 4 6 lsmpr φNXU=NXLSSumWNU
38 37 sseq1d φNXUNXYNXLSSumWNUNXY
39 35 36 38 3bitr4d φUNXYNXUNXY
40 11 39 mtbird φ¬UNXY