| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsssra.w |  | 
						
							| 2 |  | lsssra.a |  | 
						
							| 3 |  | lsssra.s |  | 
						
							| 4 |  | lsssra.b |  | 
						
							| 5 |  | lsssra.c |  | 
						
							| 6 | 3 | subsubrg |  | 
						
							| 7 | 6 | biimpa |  | 
						
							| 8 | 4 5 7 | syl2anc |  | 
						
							| 9 | 8 | simpld |  | 
						
							| 10 | 1 | sralmod |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 | 2 | subrgss |  | 
						
							| 13 | 4 12 | syl |  | 
						
							| 14 | 1 | a1i |  | 
						
							| 15 | 8 | simprd |  | 
						
							| 16 | 15 13 | sstrd |  | 
						
							| 17 | 16 2 | sseqtrdi |  | 
						
							| 18 | 14 17 | srabase |  | 
						
							| 19 | 2 18 | eqtrid |  | 
						
							| 20 | 13 19 | sseqtrd |  | 
						
							| 21 | 4 | elfvexd |  | 
						
							| 22 | 2 3 13 15 21 | resssra |  | 
						
							| 23 | 1 | oveq1i |  | 
						
							| 24 | 22 23 | eqtr4di |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 25 | sralmod |  | 
						
							| 27 | 5 26 | syl |  | 
						
							| 28 | 24 27 | eqeltrrd |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 29 30 31 | islss3 |  | 
						
							| 33 | 32 | biimpar |  | 
						
							| 34 | 11 20 28 33 | syl12anc |  |