Metamath Proof Explorer


Theorem lsssra

Description: A subring is a subspace of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses lsssra.w W=subringAlgRC
lsssra.a A=BaseR
lsssra.s S=R𝑠B
lsssra.b φBSubRingR
lsssra.c φCSubRingS
Assertion lsssra φBLSubSpW

Proof

Step Hyp Ref Expression
1 lsssra.w W=subringAlgRC
2 lsssra.a A=BaseR
3 lsssra.s S=R𝑠B
4 lsssra.b φBSubRingR
5 lsssra.c φCSubRingS
6 3 subsubrg BSubRingRCSubRingSCSubRingRCB
7 6 biimpa BSubRingRCSubRingSCSubRingRCB
8 4 5 7 syl2anc φCSubRingRCB
9 8 simpld φCSubRingR
10 1 sralmod CSubRingRWLMod
11 9 10 syl φWLMod
12 2 subrgss BSubRingRBA
13 4 12 syl φBA
14 1 a1i φW=subringAlgRC
15 8 simprd φCB
16 15 13 sstrd φCA
17 16 2 sseqtrdi φCBaseR
18 14 17 srabase φBaseR=BaseW
19 2 18 eqtrid φA=BaseW
20 13 19 sseqtrd φBBaseW
21 4 elfvexd φRV
22 2 3 13 15 21 resssra φsubringAlgSC=subringAlgRC𝑠B
23 1 oveq1i W𝑠B=subringAlgRC𝑠B
24 22 23 eqtr4di φsubringAlgSC=W𝑠B
25 eqid subringAlgSC=subringAlgSC
26 25 sralmod CSubRingSsubringAlgSCLMod
27 5 26 syl φsubringAlgSCLMod
28 24 27 eqeltrrd φW𝑠BLMod
29 eqid W𝑠B=W𝑠B
30 eqid BaseW=BaseW
31 eqid LSubSpW=LSubSpW
32 29 30 31 islss3 WLModBLSubSpWBBaseWW𝑠BLMod
33 32 biimpar WLModBBaseWW𝑠BLModBLSubSpW
34 11 20 28 33 syl12anc φBLSubSpW