Description: A subring is a subspace of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsssra.w | |
|
lsssra.a | |
||
lsssra.s | |
||
lsssra.b | |
||
lsssra.c | |
||
Assertion | lsssra | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsssra.w | |
|
2 | lsssra.a | |
|
3 | lsssra.s | |
|
4 | lsssra.b | |
|
5 | lsssra.c | |
|
6 | 3 | subsubrg | |
7 | 6 | biimpa | |
8 | 4 5 7 | syl2anc | |
9 | 8 | simpld | |
10 | 1 | sralmod | |
11 | 9 10 | syl | |
12 | 2 | subrgss | |
13 | 4 12 | syl | |
14 | 1 | a1i | |
15 | 8 | simprd | |
16 | 15 13 | sstrd | |
17 | 16 2 | sseqtrdi | |
18 | 14 17 | srabase | |
19 | 2 18 | eqtrid | |
20 | 13 19 | sseqtrd | |
21 | 4 | elfvexd | |
22 | 2 3 13 15 21 | resssra | |
23 | 1 | oveq1i | |
24 | 22 23 | eqtr4di | |
25 | eqid | |
|
26 | 25 | sralmod | |
27 | 5 26 | syl | |
28 | 24 27 | eqeltrrd | |
29 | eqid | |
|
30 | eqid | |
|
31 | eqid | |
|
32 | 29 30 31 | islss3 | |
33 | 32 | biimpar | |
34 | 11 20 28 33 | syl12anc | |