Metamath Proof Explorer


Theorem lssvancl1

Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 . Can it be used along with lspsnne1 , lspsnne2 to shorten this proof? (Contributed by NM, 14-May-2015)

Ref Expression
Hypotheses lssvancl.v V=BaseW
lssvancl.p +˙=+W
lssvancl.s S=LSubSpW
lssvancl.w φWLMod
lssvancl.u φUS
lssvancl.x φXU
lssvancl.y φYV
lssvancl.n φ¬YU
Assertion lssvancl1 φ¬X+˙YU

Proof

Step Hyp Ref Expression
1 lssvancl.v V=BaseW
2 lssvancl.p +˙=+W
3 lssvancl.s S=LSubSpW
4 lssvancl.w φWLMod
5 lssvancl.u φUS
6 lssvancl.x φXU
7 lssvancl.y φYV
8 lssvancl.n φ¬YU
9 lmodabl WLModWAbel
10 4 9 syl φWAbel
11 1 3 lssel USXUXV
12 5 6 11 syl2anc φXV
13 eqid -W=-W
14 1 2 13 ablpncan2 WAbelXVYVX+˙Y-WX=Y
15 10 12 7 14 syl3anc φX+˙Y-WX=Y
16 15 adantr φX+˙YUX+˙Y-WX=Y
17 4 adantr φX+˙YUWLMod
18 5 adantr φX+˙YUUS
19 simpr φX+˙YUX+˙YU
20 6 adantr φX+˙YUXU
21 13 3 lssvsubcl WLModUSX+˙YUXUX+˙Y-WXU
22 17 18 19 20 21 syl22anc φX+˙YUX+˙Y-WXU
23 16 22 eqeltrrd φX+˙YUYU
24 8 23 mtand φ¬X+˙YU