Metamath Proof Explorer


Theorem ltexprlem6

Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis ltexprlem.1 C=x|y¬yAy+𝑸xB
Assertion ltexprlem6 A𝑷B𝑷ABA+𝑷CB

Proof

Step Hyp Ref Expression
1 ltexprlem.1 C=x|y¬yAy+𝑸xB
2 1 ltexprlem5 B𝑷ABC𝑷
3 df-plp +𝑷=z𝑷,y𝑷f|gzhyf=g+𝑸h
4 addclnq g𝑸h𝑸g+𝑸h𝑸
5 3 4 genpelv A𝑷C𝑷zA+𝑷CwAxCz=w+𝑸x
6 2 5 sylan2 A𝑷B𝑷ABzA+𝑷CwAxCz=w+𝑸x
7 1 eqabri xCy¬yAy+𝑸xB
8 elprnq B𝑷y+𝑸xBy+𝑸x𝑸
9 addnqf +𝑸:𝑸×𝑸𝑸
10 9 fdmi dom+𝑸=𝑸×𝑸
11 0nnq ¬𝑸
12 10 11 ndmovrcl y+𝑸x𝑸y𝑸x𝑸
13 12 simpld y+𝑸x𝑸y𝑸
14 8 13 syl B𝑷y+𝑸xBy𝑸
15 prub A𝑷wAy𝑸¬yAw<𝑸y
16 14 15 sylan2 A𝑷wAB𝑷y+𝑸xB¬yAw<𝑸y
17 12 simprd y+𝑸x𝑸x𝑸
18 vex wV
19 vex yV
20 ltanq u𝑸z<𝑸vu+𝑸z<𝑸u+𝑸v
21 vex xV
22 addcomnq z+𝑸v=v+𝑸z
23 18 19 20 21 22 caovord2 x𝑸w<𝑸yw+𝑸x<𝑸y+𝑸x
24 8 17 23 3syl B𝑷y+𝑸xBw<𝑸yw+𝑸x<𝑸y+𝑸x
25 prcdnq B𝑷y+𝑸xBw+𝑸x<𝑸y+𝑸xw+𝑸xB
26 24 25 sylbid B𝑷y+𝑸xBw<𝑸yw+𝑸xB
27 26 adantl A𝑷wAB𝑷y+𝑸xBw<𝑸yw+𝑸xB
28 16 27 syld A𝑷wAB𝑷y+𝑸xB¬yAw+𝑸xB
29 28 exp32 A𝑷wAB𝑷y+𝑸xB¬yAw+𝑸xB
30 29 com34 A𝑷wAB𝑷¬yAy+𝑸xBw+𝑸xB
31 30 imp4b A𝑷wAB𝑷¬yAy+𝑸xBw+𝑸xB
32 31 exlimdv A𝑷wAB𝑷y¬yAy+𝑸xBw+𝑸xB
33 7 32 biimtrid A𝑷wAB𝑷xCw+𝑸xB
34 33 exp31 A𝑷wAB𝑷xCw+𝑸xB
35 34 com23 A𝑷B𝑷wAxCw+𝑸xB
36 35 imp43 A𝑷B𝑷wAxCw+𝑸xB
37 eleq1 z=w+𝑸xzBw+𝑸xB
38 37 biimparc w+𝑸xBz=w+𝑸xzB
39 36 38 sylan A𝑷B𝑷wAxCz=w+𝑸xzB
40 39 exp31 A𝑷B𝑷wAxCz=w+𝑸xzB
41 40 rexlimdvv A𝑷B𝑷wAxCz=w+𝑸xzB
42 41 adantrr A𝑷B𝑷ABwAxCz=w+𝑸xzB
43 6 42 sylbid A𝑷B𝑷ABzA+𝑷CzB
44 43 ssrdv A𝑷B𝑷ABA+𝑷CB
45 44 anassrs A𝑷B𝑷ABA+𝑷CB