Metamath Proof Explorer


Theorem ltmod

Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltmod.a φA
ltmod.b φB+
ltmod.c φCAAmodBA
Assertion ltmod φCmodB<AmodB

Proof

Step Hyp Ref Expression
1 ltmod.a φA
2 ltmod.b φB+
3 ltmod.c φCAAmodBA
4 1 2 modcld φAmodB
5 1 4 resubcld φAAmodB
6 1 rexrd φA*
7 icossre AAmodBA*AAmodBA
8 5 6 7 syl2anc φAAmodBA
9 8 3 sseldd φC
10 2 rpred φB
11 9 2 rerpdivcld φCB
12 11 flcld φCB
13 12 zred φCB
14 10 13 remulcld φBCB
15 5 rexrd φAAmodB*
16 icoltub AAmodB*A*CAAmodBAC<A
17 15 6 3 16 syl3anc φC<A
18 9 1 14 17 ltsub1dd φCBCB<ABCB
19 icossicc AAmodBAAAmodBA
20 19 3 sselid φCAAmodBA
21 1 2 20 lefldiveq φAB=CB
22 21 eqcomd φCB=AB
23 22 oveq2d φBCB=BAB
24 23 oveq2d φABCB=ABAB
25 18 24 breqtrd φCBCB<ABAB
26 modval CB+CmodB=CBCB
27 9 2 26 syl2anc φCmodB=CBCB
28 modval AB+AmodB=ABAB
29 1 2 28 syl2anc φAmodB=ABAB
30 25 27 29 3brtr4d φCmodB<AmodB