Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltmod.a | |
|
ltmod.b | |
||
ltmod.c | |
||
Assertion | ltmod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmod.a | |
|
2 | ltmod.b | |
|
3 | ltmod.c | |
|
4 | 1 2 | modcld | |
5 | 1 4 | resubcld | |
6 | 1 | rexrd | |
7 | icossre | |
|
8 | 5 6 7 | syl2anc | |
9 | 8 3 | sseldd | |
10 | 2 | rpred | |
11 | 9 2 | rerpdivcld | |
12 | 11 | flcld | |
13 | 12 | zred | |
14 | 10 13 | remulcld | |
15 | 5 | rexrd | |
16 | icoltub | |
|
17 | 15 6 3 16 | syl3anc | |
18 | 9 1 14 17 | ltsub1dd | |
19 | icossicc | |
|
20 | 19 3 | sselid | |
21 | 1 2 20 | lefldiveq | |
22 | 21 | eqcomd | |
23 | 22 | oveq2d | |
24 | 23 | oveq2d | |
25 | 18 24 | breqtrd | |
26 | modval | |
|
27 | 9 2 26 | syl2anc | |
28 | modval | |
|
29 | 1 2 28 | syl2anc | |
30 | 25 27 29 | 3brtr4d | |