| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islpcn.s |
|
| 2 |
|
islpcn.p |
|
| 3 |
|
eqid |
|
| 4 |
3
|
cnfldtop |
|
| 5 |
4
|
a1i |
|
| 6 |
|
unicntop |
|
| 7 |
6
|
islp2 |
|
| 8 |
5 1 2 7
|
syl3anc |
|
| 9 |
|
cnxmet |
|
| 10 |
9
|
a1i |
|
| 11 |
2
|
adantr |
|
| 12 |
|
simpr |
|
| 13 |
3
|
cnfldtopn |
|
| 14 |
13
|
blnei |
|
| 15 |
10 11 12 14
|
syl3anc |
|
| 16 |
15
|
adantlr |
|
| 17 |
|
simplr |
|
| 18 |
|
ineq1 |
|
| 19 |
18
|
neeq1d |
|
| 20 |
19
|
rspcva |
|
| 21 |
16 17 20
|
syl2anc |
|
| 22 |
|
n0 |
|
| 23 |
21 22
|
sylib |
|
| 24 |
|
elinel2 |
|
| 25 |
24
|
adantl |
|
| 26 |
1
|
adantr |
|
| 27 |
24
|
eldifad |
|
| 28 |
27
|
adantl |
|
| 29 |
26 28
|
sseldd |
|
| 30 |
2
|
adantr |
|
| 31 |
29 30
|
abssubd |
|
| 32 |
|
eqid |
|
| 33 |
32
|
cnmetdval |
|
| 34 |
30 29 33
|
syl2anc |
|
| 35 |
31 34
|
eqtr4d |
|
| 36 |
35
|
adantlr |
|
| 37 |
|
elinel1 |
|
| 38 |
37
|
adantl |
|
| 39 |
9
|
a1i |
|
| 40 |
11
|
adantr |
|
| 41 |
|
rpxr |
|
| 42 |
41
|
ad2antlr |
|
| 43 |
|
elbl |
|
| 44 |
39 40 42 43
|
syl3anc |
|
| 45 |
38 44
|
mpbid |
|
| 46 |
45
|
simprd |
|
| 47 |
36 46
|
eqbrtrd |
|
| 48 |
25 47
|
jca |
|
| 49 |
48
|
ex |
|
| 50 |
49
|
adantlr |
|
| 51 |
50
|
eximdv |
|
| 52 |
23 51
|
mpd |
|
| 53 |
|
df-rex |
|
| 54 |
52 53
|
sylibr |
|
| 55 |
54
|
ralrimiva |
|
| 56 |
9
|
a1i |
|
| 57 |
13
|
neibl |
|
| 58 |
56 2 57
|
syl2anc |
|
| 59 |
58
|
simplbda |
|
| 60 |
59
|
adantlr |
|
| 61 |
|
nfv |
|
| 62 |
|
nfra1 |
|
| 63 |
61 62
|
nfan |
|
| 64 |
|
nfv |
|
| 65 |
63 64
|
nfan |
|
| 66 |
|
nfv |
|
| 67 |
|
simp1l |
|
| 68 |
|
simp2 |
|
| 69 |
67 68
|
jca |
|
| 70 |
|
rspa |
|
| 71 |
70
|
adantll |
|
| 72 |
71
|
3adant3 |
|
| 73 |
|
simp3 |
|
| 74 |
53
|
biimpi |
|
| 75 |
74
|
ad2antlr |
|
| 76 |
|
nfv |
|
| 77 |
|
nfre1 |
|
| 78 |
76 77
|
nfan |
|
| 79 |
|
nfv |
|
| 80 |
78 79
|
nfan |
|
| 81 |
|
simplr |
|
| 82 |
1
|
adantr |
|
| 83 |
|
eldifi |
|
| 84 |
83
|
adantl |
|
| 85 |
82 84
|
sseldd |
|
| 86 |
85
|
adantrr |
|
| 87 |
2
|
adantr |
|
| 88 |
87 85 33
|
syl2anc |
|
| 89 |
87 85
|
abssubd |
|
| 90 |
88 89
|
eqtrd |
|
| 91 |
90
|
adantrr |
|
| 92 |
|
simprr |
|
| 93 |
91 92
|
eqbrtrd |
|
| 94 |
86 93
|
jca |
|
| 95 |
94
|
adantlr |
|
| 96 |
9
|
a1i |
|
| 97 |
11
|
adantr |
|
| 98 |
41
|
ad2antlr |
|
| 99 |
96 97 98 43
|
syl3anc |
|
| 100 |
95 99
|
mpbird |
|
| 101 |
100
|
adantlr |
|
| 102 |
81 101
|
sseldd |
|
| 103 |
|
simprl |
|
| 104 |
102 103
|
elind |
|
| 105 |
104
|
ex |
|
| 106 |
105
|
adantlr |
|
| 107 |
80 106
|
eximd |
|
| 108 |
75 107
|
mpd |
|
| 109 |
|
n0 |
|
| 110 |
108 109
|
sylibr |
|
| 111 |
69 72 73 110
|
syl21anc |
|
| 112 |
111
|
3exp |
|
| 113 |
112
|
adantr |
|
| 114 |
65 66 113
|
rexlimd |
|
| 115 |
60 114
|
mpd |
|
| 116 |
115
|
ralrimiva |
|
| 117 |
55 116
|
impbida |
|
| 118 |
8 117
|
bitrd |
|