Metamath Proof Explorer


Theorem lvecindp

Description: Compute the X coefficient in a sum with an independent vector X (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions Y and Z (second conjunct). Typically, U is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015) (Revised by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 19-Jul-2022)

Ref Expression
Hypotheses lvecindp.v V=BaseW
lvecindp.p +˙=+W
lvecindp.f F=ScalarW
lvecindp.k K=BaseF
lvecindp.t ·˙=W
lvecindp.s S=LSubSpW
lvecindp.w φWLVec
lvecindp.u φUS
lvecindp.x φXV
lvecindp.n φ¬XU
lvecindp.y φYU
lvecindp.z φZU
lvecindp.a φAK
lvecindp.b φBK
lvecindp.e φA·˙X+˙Y=B·˙X+˙Z
Assertion lvecindp φA=BY=Z

Proof

Step Hyp Ref Expression
1 lvecindp.v V=BaseW
2 lvecindp.p +˙=+W
3 lvecindp.f F=ScalarW
4 lvecindp.k K=BaseF
5 lvecindp.t ·˙=W
6 lvecindp.s S=LSubSpW
7 lvecindp.w φWLVec
8 lvecindp.u φUS
9 lvecindp.x φXV
10 lvecindp.n φ¬XU
11 lvecindp.y φYU
12 lvecindp.z φZU
13 lvecindp.a φAK
14 lvecindp.b φBK
15 lvecindp.e φA·˙X+˙Y=B·˙X+˙Z
16 eqid 0W=0W
17 eqid CntzW=CntzW
18 lveclmod WLVecWLMod
19 7 18 syl φWLMod
20 eqid LSpanW=LSpanW
21 1 20 lspsnsubg WLModXVLSpanWXSubGrpW
22 19 9 21 syl2anc φLSpanWXSubGrpW
23 6 lsssssubg WLModSSubGrpW
24 19 23 syl φSSubGrpW
25 24 8 sseldd φUSubGrpW
26 1 16 20 6 7 8 9 10 lspdisj φLSpanWXU=0W
27 lmodabl WLModWAbel
28 19 27 syl φWAbel
29 17 28 22 25 ablcntzd φLSpanWXCntzWU
30 1 5 3 4 20 19 13 9 lspsneli φA·˙XLSpanWX
31 1 5 3 4 20 19 14 9 lspsneli φB·˙XLSpanWX
32 2 16 17 22 25 26 29 30 31 11 12 15 subgdisj1 φA·˙X=B·˙X
33 16 6 19 8 10 lssvneln0 φX0W
34 1 5 3 4 16 7 13 14 9 33 lvecvscan2 φA·˙X=B·˙XA=B
35 32 34 mpbid φA=B
36 2 16 17 22 25 26 29 30 31 11 12 15 subgdisj2 φY=Z
37 35 36 jca φA=BY=Z