Description: Compute the X coefficient in a sum with an independent vector X (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions Y and Z (second conjunct). Typically, U is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015) (Revised by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 19-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lvecindp.v | |
|
lvecindp.p | |
||
lvecindp.f | |
||
lvecindp.k | |
||
lvecindp.t | |
||
lvecindp.s | |
||
lvecindp.w | |
||
lvecindp.u | |
||
lvecindp.x | |
||
lvecindp.n | |
||
lvecindp.y | |
||
lvecindp.z | |
||
lvecindp.a | |
||
lvecindp.b | |
||
lvecindp.e | |
||
Assertion | lvecindp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecindp.v | |
|
2 | lvecindp.p | |
|
3 | lvecindp.f | |
|
4 | lvecindp.k | |
|
5 | lvecindp.t | |
|
6 | lvecindp.s | |
|
7 | lvecindp.w | |
|
8 | lvecindp.u | |
|
9 | lvecindp.x | |
|
10 | lvecindp.n | |
|
11 | lvecindp.y | |
|
12 | lvecindp.z | |
|
13 | lvecindp.a | |
|
14 | lvecindp.b | |
|
15 | lvecindp.e | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | lveclmod | |
|
19 | 7 18 | syl | |
20 | eqid | |
|
21 | 1 20 | lspsnsubg | |
22 | 19 9 21 | syl2anc | |
23 | 6 | lsssssubg | |
24 | 19 23 | syl | |
25 | 24 8 | sseldd | |
26 | 1 16 20 6 7 8 9 10 | lspdisj | |
27 | lmodabl | |
|
28 | 19 27 | syl | |
29 | 17 28 22 25 | ablcntzd | |
30 | 1 5 3 4 20 19 13 9 | lspsneli | |
31 | 1 5 3 4 20 19 14 9 | lspsneli | |
32 | 2 16 17 22 25 26 29 30 31 11 12 15 | subgdisj1 | |
33 | 16 6 19 8 10 | lssvneln0 | |
34 | 1 5 3 4 16 7 13 14 9 33 | lvecvscan2 | |
35 | 32 34 | mpbid | |
36 | 2 16 17 22 25 26 29 30 31 11 12 15 | subgdisj2 | |
37 | 35 36 | jca | |