| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvecmul0or.v |
|
| 2 |
|
lvecmul0or.s |
|
| 3 |
|
lvecmul0or.f |
|
| 4 |
|
lvecmul0or.k |
|
| 5 |
|
lvecmul0or.o |
|
| 6 |
|
lvecmul0or.z |
|
| 7 |
|
lvecmul0or.w |
|
| 8 |
|
lvecmul0or.a |
|
| 9 |
|
lvecmul0or.x |
|
| 10 |
|
df-ne |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
ad2antlr |
|
| 13 |
7
|
adantr |
|
| 14 |
3
|
lvecdrng |
|
| 15 |
13 14
|
syl |
|
| 16 |
8
|
adantr |
|
| 17 |
|
simpr |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
4 5 18 19 20
|
drnginvrl |
|
| 22 |
15 16 17 21
|
syl3anc |
|
| 23 |
22
|
oveq1d |
|
| 24 |
|
lveclmod |
|
| 25 |
7 24
|
syl |
|
| 26 |
25
|
adantr |
|
| 27 |
4 5 20
|
drnginvrcl |
|
| 28 |
15 16 17 27
|
syl3anc |
|
| 29 |
9
|
adantr |
|
| 30 |
1 3 2 4 18
|
lmodvsass |
|
| 31 |
26 28 16 29 30
|
syl13anc |
|
| 32 |
1 3 2 19
|
lmodvs1 |
|
| 33 |
25 9 32
|
syl2anc |
|
| 34 |
33
|
adantr |
|
| 35 |
23 31 34
|
3eqtr3d |
|
| 36 |
35
|
adantlr |
|
| 37 |
25
|
adantr |
|
| 38 |
37
|
adantr |
|
| 39 |
28
|
adantlr |
|
| 40 |
3 2 4 6
|
lmodvs0 |
|
| 41 |
38 39 40
|
syl2anc |
|
| 42 |
12 36 41
|
3eqtr3d |
|
| 43 |
42
|
ex |
|
| 44 |
10 43
|
biimtrrid |
|
| 45 |
44
|
orrd |
|
| 46 |
45
|
ex |
|
| 47 |
1 3 2 5 6
|
lmod0vs |
|
| 48 |
25 9 47
|
syl2anc |
|
| 49 |
|
oveq1 |
|
| 50 |
49
|
eqeq1d |
|
| 51 |
48 50
|
syl5ibrcom |
|
| 52 |
3 2 4 6
|
lmodvs0 |
|
| 53 |
25 8 52
|
syl2anc |
|
| 54 |
|
oveq2 |
|
| 55 |
54
|
eqeq1d |
|
| 56 |
53 55
|
syl5ibrcom |
|
| 57 |
51 56
|
jaod |
|
| 58 |
46 57
|
impbid |
|