Metamath Proof Explorer


Theorem lvoli2

Description: The join of 4 different atoms is a lattice volume. (Contributed by NM, 8-Jul-2012)

Ref Expression
Hypotheses lvoli2.l ˙=K
lvoli2.j ˙=joinK
lvoli2.a A=AtomsK
lvoli2.v V=LVolsK
Assertion lvoli2 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙SV

Proof

Step Hyp Ref Expression
1 lvoli2.l ˙=K
2 lvoli2.j ˙=joinK
3 lvoli2.a A=AtomsK
4 lvoli2.v V=LVolsK
5 simp12 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RPA
6 simp13 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RQA
7 simp3 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RPQ¬R˙P˙Q¬S˙P˙Q˙R
8 eqidd KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S=P˙Q˙R˙S
9 neeq1 p=PpqPq
10 oveq1 p=Pp˙q=P˙q
11 10 breq2d p=PR˙p˙qR˙P˙q
12 11 notbid p=P¬R˙p˙q¬R˙P˙q
13 10 oveq1d p=Pp˙q˙R=P˙q˙R
14 13 breq2d p=PS˙p˙q˙RS˙P˙q˙R
15 14 notbid p=P¬S˙p˙q˙R¬S˙P˙q˙R
16 9 12 15 3anbi123d p=Ppq¬R˙p˙q¬S˙p˙q˙RPq¬R˙P˙q¬S˙P˙q˙R
17 13 oveq1d p=Pp˙q˙R˙S=P˙q˙R˙S
18 17 eqeq2d p=PP˙Q˙R˙S=p˙q˙R˙SP˙Q˙R˙S=P˙q˙R˙S
19 16 18 anbi12d p=Ppq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙SPq¬R˙P˙q¬S˙P˙q˙RP˙Q˙R˙S=P˙q˙R˙S
20 neeq2 q=QPqPQ
21 oveq2 q=QP˙q=P˙Q
22 21 breq2d q=QR˙P˙qR˙P˙Q
23 22 notbid q=Q¬R˙P˙q¬R˙P˙Q
24 21 oveq1d q=QP˙q˙R=P˙Q˙R
25 24 breq2d q=QS˙P˙q˙RS˙P˙Q˙R
26 25 notbid q=Q¬S˙P˙q˙R¬S˙P˙Q˙R
27 20 23 26 3anbi123d q=QPq¬R˙P˙q¬S˙P˙q˙RPQ¬R˙P˙Q¬S˙P˙Q˙R
28 24 oveq1d q=QP˙q˙R˙S=P˙Q˙R˙S
29 28 eqeq2d q=QP˙Q˙R˙S=P˙q˙R˙SP˙Q˙R˙S=P˙Q˙R˙S
30 27 29 anbi12d q=QPq¬R˙P˙q¬S˙P˙q˙RP˙Q˙R˙S=P˙q˙R˙SPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S=P˙Q˙R˙S
31 19 30 rspc2ev PAQAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S=P˙Q˙R˙SpAqApq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙S
32 5 6 7 8 31 syl112anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RpAqApq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙S
33 32 3exp KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RpAqApq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙S
34 simplrl KHLPAQARASApq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙SRA
35 simplrr KHLPAQARASApq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙SSA
36 simpr KHLPAQARASApq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙Spq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙S
37 breq1 r=Rr˙p˙qR˙p˙q
38 37 notbid r=R¬r˙p˙q¬R˙p˙q
39 oveq2 r=Rp˙q˙r=p˙q˙R
40 39 breq2d r=Rs˙p˙q˙rs˙p˙q˙R
41 40 notbid r=R¬s˙p˙q˙r¬s˙p˙q˙R
42 38 41 3anbi23d r=Rpq¬r˙p˙q¬s˙p˙q˙rpq¬R˙p˙q¬s˙p˙q˙R
43 39 oveq1d r=Rp˙q˙r˙s=p˙q˙R˙s
44 43 eqeq2d r=RP˙Q˙R˙S=p˙q˙r˙sP˙Q˙R˙S=p˙q˙R˙s
45 42 44 anbi12d r=Rpq¬r˙p˙q¬s˙p˙q˙rP˙Q˙R˙S=p˙q˙r˙spq¬R˙p˙q¬s˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙s
46 breq1 s=Ss˙p˙q˙RS˙p˙q˙R
47 46 notbid s=S¬s˙p˙q˙R¬S˙p˙q˙R
48 47 3anbi3d s=Spq¬R˙p˙q¬s˙p˙q˙Rpq¬R˙p˙q¬S˙p˙q˙R
49 oveq2 s=Sp˙q˙R˙s=p˙q˙R˙S
50 49 eqeq2d s=SP˙Q˙R˙S=p˙q˙R˙sP˙Q˙R˙S=p˙q˙R˙S
51 48 50 anbi12d s=Spq¬R˙p˙q¬s˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙spq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙S
52 45 51 rspc2ev RASApq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙SrAsApq¬r˙p˙q¬s˙p˙q˙rP˙Q˙R˙S=p˙q˙r˙s
53 34 35 36 52 syl3anc KHLPAQARASApq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙SrAsApq¬r˙p˙q¬s˙p˙q˙rP˙Q˙R˙S=p˙q˙r˙s
54 53 ex KHLPAQARASApq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙SrAsApq¬r˙p˙q¬s˙p˙q˙rP˙Q˙R˙S=p˙q˙r˙s
55 54 reximdv KHLPAQARASAqApq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙SqArAsApq¬r˙p˙q¬s˙p˙q˙rP˙Q˙R˙S=p˙q˙r˙s
56 55 reximdv KHLPAQARASApAqApq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙SpAqArAsApq¬r˙p˙q¬s˙p˙q˙rP˙Q˙R˙S=p˙q˙r˙s
57 56 ex KHLPAQARASApAqApq¬R˙p˙q¬S˙p˙q˙RP˙Q˙R˙S=p˙q˙R˙SpAqArAsApq¬r˙p˙q¬s˙p˙q˙rP˙Q˙R˙S=p˙q˙r˙s
58 33 57 syldd KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RpAqArAsApq¬r˙p˙q¬s˙p˙q˙rP˙Q˙R˙S=p˙q˙r˙s
59 58 3imp KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RpAqArAsApq¬r˙p˙q¬s˙p˙q˙rP˙Q˙R˙S=p˙q˙r˙s
60 simp11 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RKHL
61 60 hllatd KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RKLat
62 eqid BaseK=BaseK
63 62 2 3 hlatjcl KHLPAQAP˙QBaseK
64 63 3ad2ant1 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙QBaseK
65 simp2l KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RRA
66 62 3 atbase RARBaseK
67 65 66 syl KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RRBaseK
68 62 2 latjcl KLatP˙QBaseKRBaseKP˙Q˙RBaseK
69 61 64 67 68 syl3anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙RBaseK
70 simp2r KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RSA
71 62 3 atbase SASBaseK
72 70 71 syl KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RSBaseK
73 62 2 latjcl KLatP˙Q˙RBaseKSBaseKP˙Q˙R˙SBaseK
74 61 69 72 73 syl3anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙SBaseK
75 62 1 2 3 4 islvol5 KHLP˙Q˙R˙SBaseKP˙Q˙R˙SVpAqArAsApq¬r˙p˙q¬s˙p˙q˙rP˙Q˙R˙S=p˙q˙r˙s
76 60 74 75 syl2anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙SVpAqArAsApq¬r˙p˙q¬s˙p˙q˙rP˙Q˙R˙S=p˙q˙r˙s
77 59 76 mpbird KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙SV