Metamath Proof Explorer


Theorem mapdat

Description: Atoms are preserved by the map defined by df-mapd . Property (g) in Baer p. 41. (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses mapdat.h H=LHypK
mapdat.m M=mapdKW
mapdat.u U=DVecHKW
mapdat.a A=LSAtomsU
mapdat.c C=LCDualKW
mapdat.b B=LSAtomsC
mapdat.k φKHLWH
mapdat.q φQA
Assertion mapdat φMQB

Proof

Step Hyp Ref Expression
1 mapdat.h H=LHypK
2 mapdat.m M=mapdKW
3 mapdat.u U=DVecHKW
4 mapdat.a A=LSAtomsU
5 mapdat.c C=LCDualKW
6 mapdat.b B=LSAtomsC
7 mapdat.k φKHLWH
8 mapdat.q φQA
9 eqid 0U=0U
10 eqid 0C=0C
11 1 2 3 9 5 10 7 mapd0 φM0U=0C
12 eqid LU=LU
13 1 3 7 dvhlvec φULVec
14 9 4 12 13 8 lsatcv0 φ0ULUQ
15 eqid LSubSpU=LSubSpU
16 eqid LC=LC
17 1 3 7 dvhlmod φULMod
18 9 15 lsssn0 ULMod0ULSubSpU
19 17 18 syl φ0ULSubSpU
20 15 4 17 8 lsatlssel φQLSubSpU
21 1 2 3 15 12 5 16 7 19 20 mapdcv φ0ULUQM0ULCMQ
22 14 21 mpbid φM0ULCMQ
23 11 22 eqbrtrrd φ0CLCMQ
24 eqid LSubSpC=LSubSpC
25 1 5 7 lcdlvec φCLVec
26 1 2 3 15 5 24 7 20 mapdcl2 φMQLSubSpC
27 10 24 6 16 25 26 lsat0cv φMQB0CLCMQ
28 23 27 mpbird φMQB