Metamath Proof Explorer


Theorem mapdh8aa

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 12-May-2015)

Ref Expression
Hypotheses mapdh8a.h H=LHypK
mapdh8a.u U=DVecHKW
mapdh8a.v V=BaseU
mapdh8a.s -˙=-U
mapdh8a.o 0˙=0U
mapdh8a.n N=LSpanU
mapdh8a.c C=LCDualKW
mapdh8a.d D=BaseC
mapdh8a.r R=-C
mapdh8a.q Q=0C
mapdh8a.j J=LSpanC
mapdh8a.m M=mapdKW
mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh8a.k φKHLWH
mapdh8aa.f φFD
mapdh8aa.mn φMNX=JF
mapdh8aa.eg φIXFY=G
mapdh8aa.ee φIXFZ=E
mapdh8aa.x φXV0˙
mapdh8aa.y φYV0˙
mapdh8aa.z φZV0˙
mapdh8aa.zt φNZNT
mapdh8aa.t φTV0˙
mapdh8aa.yn φ¬YNZT
mapdh8aa.xn φ¬XNYZ
Assertion mapdh8aa φIYGT=IZET

Proof

Step Hyp Ref Expression
1 mapdh8a.h H=LHypK
2 mapdh8a.u U=DVecHKW
3 mapdh8a.v V=BaseU
4 mapdh8a.s -˙=-U
5 mapdh8a.o 0˙=0U
6 mapdh8a.n N=LSpanU
7 mapdh8a.c C=LCDualKW
8 mapdh8a.d D=BaseC
9 mapdh8a.r R=-C
10 mapdh8a.q Q=0C
11 mapdh8a.j J=LSpanC
12 mapdh8a.m M=mapdKW
13 mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh8a.k φKHLWH
15 mapdh8aa.f φFD
16 mapdh8aa.mn φMNX=JF
17 mapdh8aa.eg φIXFY=G
18 mapdh8aa.ee φIXFZ=E
19 mapdh8aa.x φXV0˙
20 mapdh8aa.y φYV0˙
21 mapdh8aa.z φZV0˙
22 mapdh8aa.zt φNZNT
23 mapdh8aa.t φTV0˙
24 mapdh8aa.yn φ¬YNZT
25 mapdh8aa.xn φ¬XNYZ
26 20 eldifad φYV
27 1 2 14 dvhlvec φULVec
28 19 eldifad φXV
29 21 eldifad φZV
30 3 6 27 28 26 29 25 lspindpi φNXNYNXNZ
31 30 simpld φNXNY
32 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 19 26 31 mapdhcl φIXFYD
33 17 32 eqeltrrd φGD
34 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 19 20 33 31 mapdheq φIXFY=GMNY=JGMNX-˙Y=JFRG
35 17 34 mpbid φMNY=JGMNX-˙Y=JFRG
36 35 simpld φMNY=JG
37 23 eldifad φTV
38 3 6 27 26 29 37 24 lspindpi φNYNZNYNT
39 38 simpld φNYNZ
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 39 25 19 20 21 mapdh75d φIYGZ=E
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 36 40 20 21 22 23 24 mapdh8a φIZET=IYGT
42 41 eqcomd φIYGT=IZET