Metamath Proof Explorer


Theorem mapdh8ad

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 13-May-2015)

Ref Expression
Hypotheses mapdh8a.h H=LHypK
mapdh8a.u U=DVecHKW
mapdh8a.v V=BaseU
mapdh8a.s -˙=-U
mapdh8a.o 0˙=0U
mapdh8a.n N=LSpanU
mapdh8a.c C=LCDualKW
mapdh8a.d D=BaseC
mapdh8a.r R=-C
mapdh8a.q Q=0C
mapdh8a.j J=LSpanC
mapdh8a.m M=mapdKW
mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh8a.k φKHLWH
mapdh8ac.f φFD
mapdh8ac.mn φMNX=JF
mapdh8ac.eg φIXFY=G
mapdh8ac.ee φIXFZ=E
mapdh8ac.x φXV0˙
mapdh8ac.y φYV0˙
mapdh8ac.z φZV0˙
mapdh8ac.t φTV0˙
mapdh8ac.yn φNX=NT
mapdh8ad.xy φNXNY
mapdh8ad.xz φNXNZ
Assertion mapdh8ad φIYGT=IZET

Proof

Step Hyp Ref Expression
1 mapdh8a.h H=LHypK
2 mapdh8a.u U=DVecHKW
3 mapdh8a.v V=BaseU
4 mapdh8a.s -˙=-U
5 mapdh8a.o 0˙=0U
6 mapdh8a.n N=LSpanU
7 mapdh8a.c C=LCDualKW
8 mapdh8a.d D=BaseC
9 mapdh8a.r R=-C
10 mapdh8a.q Q=0C
11 mapdh8a.j J=LSpanC
12 mapdh8a.m M=mapdKW
13 mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh8a.k φKHLWH
15 mapdh8ac.f φFD
16 mapdh8ac.mn φMNX=JF
17 mapdh8ac.eg φIXFY=G
18 mapdh8ac.ee φIXFZ=E
19 mapdh8ac.x φXV0˙
20 mapdh8ac.y φYV0˙
21 mapdh8ac.z φZV0˙
22 mapdh8ac.t φTV0˙
23 mapdh8ac.yn φNX=NT
24 mapdh8ad.xy φNXNY
25 mapdh8ad.xz φNXNZ
26 19 eldifad φXV
27 20 eldifad φYV
28 21 eldifad φZV
29 1 2 3 6 14 26 27 28 dvh3dim2 φwV¬wNXY¬wNXZ
30 14 3ad2ant1 φwV¬wNXY¬wNXZKHLWH
31 15 3ad2ant1 φwV¬wNXY¬wNXZFD
32 16 3ad2ant1 φwV¬wNXY¬wNXZMNX=JF
33 17 3ad2ant1 φwV¬wNXY¬wNXZIXFY=G
34 18 3ad2ant1 φwV¬wNXY¬wNXZIXFZ=E
35 19 3ad2ant1 φwV¬wNXY¬wNXZXV0˙
36 20 3ad2ant1 φwV¬wNXY¬wNXZYV0˙
37 21 3ad2ant1 φwV¬wNXY¬wNXZZV0˙
38 22 3ad2ant1 φwV¬wNXY¬wNXZTV0˙
39 23 3ad2ant1 φwV¬wNXY¬wNXZNX=NT
40 eqidd φwV¬wNXY¬wNXZIXFw=IXFw
41 eqid LSubSpU=LSubSpU
42 1 2 14 dvhlmod φULMod
43 42 3ad2ant1 φwV¬wNXY¬wNXZULMod
44 3 41 6 42 26 27 lspprcl φNXYLSubSpU
45 44 3ad2ant1 φwV¬wNXY¬wNXZNXYLSubSpU
46 simp2 φwV¬wNXY¬wNXZwV
47 simp3l φwV¬wNXY¬wNXZ¬wNXY
48 5 41 43 45 46 47 lssneln0 φwV¬wNXY¬wNXZwV0˙
49 1 2 14 dvhlvec φULVec
50 49 3ad2ant1 φwV¬wNXY¬wNXZULVec
51 26 3ad2ant1 φwV¬wNXY¬wNXZXV
52 27 3ad2ant1 φwV¬wNXY¬wNXZYV
53 3 6 50 46 51 52 47 lspindpi φwV¬wNXY¬wNXZNwNXNwNY
54 53 simprd φwV¬wNXY¬wNXZNwNY
55 54 necomd φwV¬wNXY¬wNXZNYNw
56 simpl1 φwV¬wNXY¬wNXZXNYwφ
57 56 49 syl φwV¬wNXY¬wNXZXNYwULVec
58 56 19 syl φwV¬wNXY¬wNXZXNYwXV0˙
59 simpl2 φwV¬wNXY¬wNXZXNYwwV
60 56 27 syl φwV¬wNXY¬wNXZXNYwYV
61 56 24 syl φwV¬wNXY¬wNXZXNYwNXNY
62 simpr φwV¬wNXY¬wNXZXNYwXNYw
63 prcom Yw=wY
64 63 fveq2i NYw=NwY
65 62 64 eleqtrdi φwV¬wNXY¬wNXZXNYwXNwY
66 3 5 6 57 58 59 60 61 65 lspexch φwV¬wNXY¬wNXZXNYwwNXY
67 47 66 mtand φwV¬wNXY¬wNXZ¬XNYw
68 28 3ad2ant1 φwV¬wNXY¬wNXZZV
69 simp3r φwV¬wNXY¬wNXZ¬wNXZ
70 3 6 50 46 51 68 69 lspindpi φwV¬wNXY¬wNXZNwNXNwNZ
71 70 simprd φwV¬wNXY¬wNXZNwNZ
72 simpl1 φwV¬wNXY¬wNXZXNwZφ
73 72 49 syl φwV¬wNXY¬wNXZXNwZULVec
74 72 19 syl φwV¬wNXY¬wNXZXNwZXV0˙
75 simpl2 φwV¬wNXY¬wNXZXNwZwV
76 72 28 syl φwV¬wNXY¬wNXZXNwZZV
77 72 25 syl φwV¬wNXY¬wNXZXNwZNXNZ
78 simpr φwV¬wNXY¬wNXZXNwZXNwZ
79 3 5 6 73 74 75 76 77 78 lspexch φwV¬wNXY¬wNXZXNwZwNXZ
80 69 79 mtand φwV¬wNXY¬wNXZ¬XNwZ
81 1 2 3 4 5 6 7 8 9 10 11 12 13 30 31 32 33 34 35 36 37 38 39 40 48 55 67 71 80 mapdh8ac φwV¬wNXY¬wNXZIYGT=IZET
82 81 rexlimdv3a φwV¬wNXY¬wNXZIYGT=IZET
83 29 82 mpd φIYGT=IZET