Description: Lemma for mapdpg . Baer p. 45, line 10: "and so y' meets all our requirements." Our h is Baer's y'. (Contributed by NM, 20-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdpglem.h | |
|
mapdpglem.m | |
||
mapdpglem.u | |
||
mapdpglem.v | |
||
mapdpglem.s | |
||
mapdpglem.n | |
||
mapdpglem.c | |
||
mapdpglem.k | |
||
mapdpglem.x | |
||
mapdpglem.y | |
||
mapdpglem1.p | |
||
mapdpglem2.j | |
||
mapdpglem3.f | |
||
mapdpglem3.te | |
||
mapdpglem3.a | |
||
mapdpglem3.b | |
||
mapdpglem3.t | |
||
mapdpglem3.r | |
||
mapdpglem3.g | |
||
mapdpglem3.e | |
||
mapdpglem4.q | |
||
mapdpglem.ne | |
||
mapdpglem4.jt | |
||
mapdpglem4.z | |
||
mapdpglem4.g4 | |
||
mapdpglem4.z4 | |
||
mapdpglem4.t4 | |
||
mapdpglem4.xn | |
||
mapdpglem12.yn | |
||
mapdpglem17.ep | |
||
Assertion | mapdpglem23 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem.h | |
|
2 | mapdpglem.m | |
|
3 | mapdpglem.u | |
|
4 | mapdpglem.v | |
|
5 | mapdpglem.s | |
|
6 | mapdpglem.n | |
|
7 | mapdpglem.c | |
|
8 | mapdpglem.k | |
|
9 | mapdpglem.x | |
|
10 | mapdpglem.y | |
|
11 | mapdpglem1.p | |
|
12 | mapdpglem2.j | |
|
13 | mapdpglem3.f | |
|
14 | mapdpglem3.te | |
|
15 | mapdpglem3.a | |
|
16 | mapdpglem3.b | |
|
17 | mapdpglem3.t | |
|
18 | mapdpglem3.r | |
|
19 | mapdpglem3.g | |
|
20 | mapdpglem3.e | |
|
21 | mapdpglem4.q | |
|
22 | mapdpglem.ne | |
|
23 | mapdpglem4.jt | |
|
24 | mapdpglem4.z | |
|
25 | mapdpglem4.g4 | |
|
26 | mapdpglem4.z4 | |
|
27 | mapdpglem4.t4 | |
|
28 | mapdpglem4.xn | |
|
29 | mapdpglem12.yn | |
|
30 | mapdpglem17.ep | |
|
31 | eqid | |
|
32 | eqid | |
|
33 | 1 3 8 | dvhlmod | |
34 | 4 31 6 | lspsncl | |
35 | 33 10 34 | syl2anc | |
36 | 1 2 3 31 7 32 8 35 | mapdcl2 | |
37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | mapdpglem19 | |
38 | 13 32 | lssel | |
39 | 36 37 38 | syl2anc | |
40 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | mapdpglem20 | |
41 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | mapdpglem22 | |
42 | sneq | |
|
43 | 42 | fveq2d | |
44 | 43 | eqeq2d | |
45 | oveq2 | |
|
46 | 45 | sneqd | |
47 | 46 | fveq2d | |
48 | 47 | eqeq2d | |
49 | 44 48 | anbi12d | |
50 | 49 | rspcev | |
51 | 39 40 41 50 | syl12anc | |