Metamath Proof Explorer


Theorem mapdpglem23

Description: Lemma for mapdpg . Baer p. 45, line 10: "and so y' meets all our requirements." Our h is Baer's y'. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
mapdpglem2.j J=LSpanC
mapdpglem3.f F=BaseC
mapdpglem3.te φtMNX˙MNY
mapdpglem3.a A=ScalarU
mapdpglem3.b B=BaseA
mapdpglem3.t ·˙=C
mapdpglem3.r R=-C
mapdpglem3.g φGF
mapdpglem3.e φMNX=JG
mapdpglem4.q Q=0U
mapdpglem.ne φNXNY
mapdpglem4.jt φMNX-˙Y=Jt
mapdpglem4.z 0˙=0A
mapdpglem4.g4 φgB
mapdpglem4.z4 φzMNY
mapdpglem4.t4 φt=g·˙GRz
mapdpglem4.xn φXQ
mapdpglem12.yn φYQ
mapdpglem17.ep E=invrAg·˙z
Assertion mapdpglem23 φhFMNY=JhMNX-˙Y=JGRh

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 mapdpglem2.j J=LSpanC
13 mapdpglem3.f F=BaseC
14 mapdpglem3.te φtMNX˙MNY
15 mapdpglem3.a A=ScalarU
16 mapdpglem3.b B=BaseA
17 mapdpglem3.t ·˙=C
18 mapdpglem3.r R=-C
19 mapdpglem3.g φGF
20 mapdpglem3.e φMNX=JG
21 mapdpglem4.q Q=0U
22 mapdpglem.ne φNXNY
23 mapdpglem4.jt φMNX-˙Y=Jt
24 mapdpglem4.z 0˙=0A
25 mapdpglem4.g4 φgB
26 mapdpglem4.z4 φzMNY
27 mapdpglem4.t4 φt=g·˙GRz
28 mapdpglem4.xn φXQ
29 mapdpglem12.yn φYQ
30 mapdpglem17.ep E=invrAg·˙z
31 eqid LSubSpU=LSubSpU
32 eqid LSubSpC=LSubSpC
33 1 3 8 dvhlmod φULMod
34 4 31 6 lspsncl ULModYVNYLSubSpU
35 33 10 34 syl2anc φNYLSubSpU
36 1 2 3 31 7 32 8 35 mapdcl2 φMNYLSubSpC
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem19 φEMNY
38 13 32 lssel MNYLSubSpCEMNYEF
39 36 37 38 syl2anc φEF
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem20 φMNY=JE
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem22 φMNX-˙Y=JGRE
42 sneq h=Eh=E
43 42 fveq2d h=EJh=JE
44 43 eqeq2d h=EMNY=JhMNY=JE
45 oveq2 h=EGRh=GRE
46 45 sneqd h=EGRh=GRE
47 46 fveq2d h=EJGRh=JGRE
48 47 eqeq2d h=EMNX-˙Y=JGRhMNX-˙Y=JGRE
49 44 48 anbi12d h=EMNY=JhMNX-˙Y=JGRhMNY=JEMNX-˙Y=JGRE
50 49 rspcev EFMNY=JEMNX-˙Y=JGREhFMNY=JhMNX-˙Y=JGRh
51 39 40 41 50 syl12anc φhFMNY=JhMNX-˙Y=JGRh