Metamath Proof Explorer


Theorem mat2pmatbas

Description: The result of a matrix transformation is a polynomial matrix. (Contributed by AV, 1-Aug-2019)

Ref Expression
Hypotheses mat2pmatbas.t T=NmatToPolyMatR
mat2pmatbas.a A=NMatR
mat2pmatbas.b B=BaseA
mat2pmatbas.p P=Poly1R
mat2pmatbas.c C=NMatP
Assertion mat2pmatbas NFinRRingMBTMBaseC

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T=NmatToPolyMatR
2 mat2pmatbas.a A=NMatR
3 mat2pmatbas.b B=BaseA
4 mat2pmatbas.p P=Poly1R
5 mat2pmatbas.c C=NMatP
6 eqid algScP=algScP
7 1 2 3 4 6 mat2pmatval NFinRRingMBTM=xN,yNalgScPxMy
8 eqid BaseP=BaseP
9 eqid BaseC=BaseC
10 simp1 NFinRRingMBNFin
11 4 fvexi PV
12 11 a1i NFinRRingMBPV
13 eqid ScalarP=ScalarP
14 4 ply1ring RRingPRing
15 14 3ad2ant2 NFinRRingMBPRing
16 15 3ad2ant1 NFinRRingMBxNyNPRing
17 4 ply1lmod RRingPLMod
18 17 3ad2ant2 NFinRRingMBPLMod
19 18 3ad2ant1 NFinRRingMBxNyNPLMod
20 eqid BaseScalarP=BaseScalarP
21 6 13 16 19 20 8 asclf NFinRRingMBxNyNalgScP:BaseScalarPBaseP
22 4 ply1sca RRingR=ScalarP
23 22 fveq2d RRingBaseR=BaseScalarP
24 23 3ad2ant2 NFinRRingMBBaseR=BaseScalarP
25 24 3ad2ant1 NFinRRingMBxNyNBaseR=BaseScalarP
26 25 feq2d NFinRRingMBxNyNalgScP:BaseRBasePalgScP:BaseScalarPBaseP
27 21 26 mpbird NFinRRingMBxNyNalgScP:BaseRBaseP
28 simp2 NFinRRingMBxNyNxN
29 simp3 NFinRRingMBxNyNyN
30 3 eleq2i MBMBaseA
31 30 biimpi MBMBaseA
32 31 3ad2ant3 NFinRRingMBMBaseA
33 32 3ad2ant1 NFinRRingMBxNyNMBaseA
34 eqid BaseR=BaseR
35 2 34 matecl xNyNMBaseAxMyBaseR
36 28 29 33 35 syl3anc NFinRRingMBxNyNxMyBaseR
37 27 36 ffvelcdmd NFinRRingMBxNyNalgScPxMyBaseP
38 5 8 9 10 12 37 matbas2d NFinRRingMBxN,yNalgScPxMyBaseC
39 7 38 eqeltrd NFinRRingMBTMBaseC