| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matplusgcell.a |
|
| 2 |
|
matplusgcell.b |
|
| 3 |
|
matsubgcell.s |
|
| 4 |
|
matsubgcell.m |
|
| 5 |
1 2
|
matrcl |
|
| 6 |
5
|
simpld |
|
| 7 |
6
|
adantr |
|
| 8 |
7
|
3ad2ant2 |
|
| 9 |
|
simp1 |
|
| 10 |
|
eqid |
|
| 11 |
1 10
|
matsubg |
|
| 12 |
8 9 11
|
syl2anc |
|
| 13 |
3 12
|
eqtr4id |
|
| 14 |
13
|
oveqd |
|
| 15 |
|
eqid |
|
| 16 |
|
xpfi |
|
| 17 |
16
|
anidms |
|
| 18 |
17
|
adantr |
|
| 19 |
5 18
|
syl |
|
| 20 |
19
|
adantr |
|
| 21 |
20
|
3ad2ant2 |
|
| 22 |
2
|
eleq2i |
|
| 23 |
22
|
biimpi |
|
| 24 |
1 10
|
matbas |
|
| 25 |
5 24
|
syl |
|
| 26 |
23 25
|
eleqtrrd |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
3ad2ant2 |
|
| 29 |
2
|
eleq2i |
|
| 30 |
29
|
biimpi |
|
| 31 |
1 2
|
matrcl |
|
| 32 |
31 24
|
syl |
|
| 33 |
30 32
|
eleqtrrd |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
3ad2ant2 |
|
| 36 |
|
eqid |
|
| 37 |
10 15 9 21 28 35 4 36
|
frlmsubgval |
|
| 38 |
14 37
|
eqtrd |
|
| 39 |
38
|
oveqd |
|
| 40 |
|
df-ov |
|
| 41 |
|
opelxpi |
|
| 42 |
41
|
anim2i |
|
| 43 |
42
|
3adant1 |
|
| 44 |
|
eqid |
|
| 45 |
1 44 2
|
matbas2i |
|
| 46 |
|
elmapfn |
|
| 47 |
45 46
|
syl |
|
| 48 |
47
|
adantr |
|
| 49 |
1 44 2
|
matbas2i |
|
| 50 |
|
elmapfn |
|
| 51 |
49 50
|
syl |
|
| 52 |
51
|
adantl |
|
| 53 |
|
inidm |
|
| 54 |
|
df-ov |
|
| 55 |
54
|
eqcomi |
|
| 56 |
55
|
a1i |
|
| 57 |
|
df-ov |
|
| 58 |
57
|
eqcomi |
|
| 59 |
58
|
a1i |
|
| 60 |
48 52 20 20 53 56 59
|
ofval |
|
| 61 |
43 60
|
syl |
|
| 62 |
40 61
|
eqtrid |
|
| 63 |
39 62
|
eqtrd |
|