Metamath Proof Explorer


Theorem mbfima

Description: Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbfima FMblFnF:AF-1BCdomvol

Proof

Step Hyp Ref Expression
1 ismbf F:AFMblFnxran.F-1xdomvol
2 1 biimpac FMblFnF:Axran.F-1xdomvol
3 ioof .:*×*𝒫
4 ffn .:*×*𝒫.Fn*×*
5 3 4 ax-mp .Fn*×*
6 fnovrn .Fn*×*B*C*BCran.
7 5 6 mp3an1 B*C*BCran.
8 imaeq2 x=BCF-1x=F-1BC
9 8 eleq1d x=BCF-1xdomvolF-1BCdomvol
10 9 rspccva xran.F-1xdomvolBCran.F-1BCdomvol
11 2 7 10 syl2an FMblFnF:AB*C*F-1BCdomvol
12 ndmioo ¬B*C*BC=
13 12 imaeq2d ¬B*C*F-1BC=F-1
14 ima0 F-1=
15 13 14 eqtrdi ¬B*C*F-1BC=
16 0mbl domvol
17 15 16 eqeltrdi ¬B*C*F-1BCdomvol
18 17 adantl FMblFnF:A¬B*C*F-1BCdomvol
19 11 18 pm2.61dan FMblFnF:AF-1BCdomvol