Metamath Proof Explorer


Theorem mbfimaicc

Description: The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion mbfimaicc FMblFnF:ABCF-1BCdomvol

Proof

Step Hyp Ref Expression
1 iccssre BCBC
2 1 adantl FMblFnF:ABCBC
3 dfss4 BCBC=BC
4 2 3 sylib FMblFnF:ABCBC=BC
5 difreicc BCBC=−∞BC+∞
6 5 adantl FMblFnF:ABCBC=−∞BC+∞
7 6 difeq2d FMblFnF:ABCBC=−∞BC+∞
8 4 7 eqtr3d FMblFnF:ABCBC=−∞BC+∞
9 8 imaeq2d FMblFnF:ABCF-1BC=F-1−∞BC+∞
10 ffun F:AFunF
11 funcnvcnv FunFFunF-1-1
12 10 11 syl F:AFunF-1-1
13 12 ad2antlr FMblFnF:ABCFunF-1-1
14 imadif FunF-1-1F-1−∞BC+∞=F-1F-1−∞BC+∞
15 13 14 syl FMblFnF:ABCF-1−∞BC+∞=F-1F-1−∞BC+∞
16 9 15 eqtrd FMblFnF:ABCF-1BC=F-1F-1−∞BC+∞
17 fimacnv F:AF-1=A
18 17 adantl FMblFnF:AF-1=A
19 mbfdm FMblFndomFdomvol
20 fdm F:AdomF=A
21 20 eleq1d F:AdomFdomvolAdomvol
22 21 biimpac domFdomvolF:AAdomvol
23 19 22 sylan FMblFnF:AAdomvol
24 18 23 eqeltrd FMblFnF:AF-1domvol
25 imaundi F-1−∞BC+∞=F-1−∞BF-1C+∞
26 mbfima FMblFnF:AF-1−∞Bdomvol
27 mbfima FMblFnF:AF-1C+∞domvol
28 unmbl F-1−∞BdomvolF-1C+∞domvolF-1−∞BF-1C+∞domvol
29 26 27 28 syl2anc FMblFnF:AF-1−∞BF-1C+∞domvol
30 25 29 eqeltrid FMblFnF:AF-1−∞BC+∞domvol
31 difmbl F-1domvolF-1−∞BC+∞domvolF-1F-1−∞BC+∞domvol
32 24 30 31 syl2anc FMblFnF:AF-1F-1−∞BC+∞domvol
33 32 adantr FMblFnF:ABCF-1F-1−∞BC+∞domvol
34 16 33 eqeltrd FMblFnF:ABCF-1BCdomvol