Description: The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | mbfimaicc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssre | |
|
2 | 1 | adantl | |
3 | dfss4 | |
|
4 | 2 3 | sylib | |
5 | difreicc | |
|
6 | 5 | adantl | |
7 | 6 | difeq2d | |
8 | 4 7 | eqtr3d | |
9 | 8 | imaeq2d | |
10 | ffun | |
|
11 | funcnvcnv | |
|
12 | 10 11 | syl | |
13 | 12 | ad2antlr | |
14 | imadif | |
|
15 | 13 14 | syl | |
16 | 9 15 | eqtrd | |
17 | fimacnv | |
|
18 | 17 | adantl | |
19 | mbfdm | |
|
20 | fdm | |
|
21 | 20 | eleq1d | |
22 | 21 | biimpac | |
23 | 19 22 | sylan | |
24 | 18 23 | eqeltrd | |
25 | imaundi | |
|
26 | mbfima | |
|
27 | mbfima | |
|
28 | unmbl | |
|
29 | 26 27 28 | syl2anc | |
30 | 25 29 | eqeltrid | |
31 | difmbl | |
|
32 | 24 30 31 | syl2anc | |
33 | 32 | adantr | |
34 | 16 33 | eqeltrd | |