| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmulc2.1 |
|
| 2 |
|
mbfmulc2.2 |
|
| 3 |
|
mbfmulc2.3 |
|
| 4 |
3 2
|
mbfdm2 |
|
| 5 |
1
|
recld |
|
| 6 |
5
|
adantr |
|
| 7 |
6
|
recnd |
|
| 8 |
3 2
|
mbfmptcl |
|
| 9 |
8
|
recld |
|
| 10 |
9
|
recnd |
|
| 11 |
7 10
|
mulcld |
|
| 12 |
|
ovexd |
|
| 13 |
|
fconstmpt |
|
| 14 |
13
|
a1i |
|
| 15 |
|
eqidd |
|
| 16 |
4 6 9 14 15
|
offval2 |
|
| 17 |
1
|
imcld |
|
| 18 |
17
|
renegcld |
|
| 19 |
18
|
adantr |
|
| 20 |
8
|
imcld |
|
| 21 |
|
fconstmpt |
|
| 22 |
21
|
a1i |
|
| 23 |
|
eqidd |
|
| 24 |
4 19 20 22 23
|
offval2 |
|
| 25 |
4 11 12 16 24
|
offval2 |
|
| 26 |
17
|
adantr |
|
| 27 |
26
|
recnd |
|
| 28 |
20
|
recnd |
|
| 29 |
27 28
|
mulcld |
|
| 30 |
11 29
|
negsubd |
|
| 31 |
27 28
|
mulneg1d |
|
| 32 |
31
|
oveq2d |
|
| 33 |
1
|
adantr |
|
| 34 |
33 8
|
remuld |
|
| 35 |
30 32 34
|
3eqtr4d |
|
| 36 |
35
|
mpteq2dva |
|
| 37 |
25 36
|
eqtrd |
|
| 38 |
8
|
ismbfcn2 |
|
| 39 |
3 38
|
mpbid |
|
| 40 |
39
|
simpld |
|
| 41 |
10
|
fmpttd |
|
| 42 |
40 5 41
|
mbfmulc2re |
|
| 43 |
39
|
simprd |
|
| 44 |
28
|
fmpttd |
|
| 45 |
43 18 44
|
mbfmulc2re |
|
| 46 |
42 45
|
mbfadd |
|
| 47 |
37 46
|
eqeltrrd |
|
| 48 |
|
ovexd |
|
| 49 |
|
ovexd |
|
| 50 |
4 6 20 14 23
|
offval2 |
|
| 51 |
|
fconstmpt |
|
| 52 |
51
|
a1i |
|
| 53 |
4 26 9 52 15
|
offval2 |
|
| 54 |
4 48 49 50 53
|
offval2 |
|
| 55 |
33 8
|
immuld |
|
| 56 |
55
|
mpteq2dva |
|
| 57 |
54 56
|
eqtr4d |
|
| 58 |
43 5 44
|
mbfmulc2re |
|
| 59 |
40 17 41
|
mbfmulc2re |
|
| 60 |
58 59
|
mbfadd |
|
| 61 |
57 60
|
eqeltrrd |
|
| 62 |
33 8
|
mulcld |
|
| 63 |
62
|
ismbfcn2 |
|
| 64 |
47 61 63
|
mpbir2and |
|