Metamath Proof Explorer


Theorem mbfmulc2re

Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014)

Ref Expression
Hypotheses mbfmulc2re.1 φFMblFn
mbfmulc2re.2 φB
mbfmulc2re.3 φF:A
Assertion mbfmulc2re φA×B×fFMblFn

Proof

Step Hyp Ref Expression
1 mbfmulc2re.1 φFMblFn
2 mbfmulc2re.2 φB
3 mbfmulc2re.3 φF:A
4 3 fdmd φdomF=A
5 1 dmexd φdomFV
6 4 5 eqeltrrd φAV
7 2 adantr φxAB
8 3 ffvelcdmda φxAFx
9 fconstmpt A×B=xAB
10 9 a1i φA×B=xAB
11 3 feqmptd φF=xAFx
12 6 7 8 10 11 offval2 φA×B×fF=xABFx
13 7 8 remul2d φxABFx=BFx
14 13 mpteq2dva φxABFx=xABFx
15 8 recld φxAFx
16 eqidd φxAFx=xAFx
17 6 7 15 10 16 offval2 φA×B×fxAFx=xABFx
18 14 17 eqtr4d φxABFx=A×B×fxAFx
19 11 1 eqeltrrd φxAFxMblFn
20 8 ismbfcn2 φxAFxMblFnxAFxMblFnxAFxMblFn
21 19 20 mpbid φxAFxMblFnxAFxMblFn
22 21 simpld φxAFxMblFn
23 15 fmpttd φxAFx:A
24 22 2 23 mbfmulc2lem φA×B×fxAFxMblFn
25 18 24 eqeltrd φxABFxMblFn
26 7 8 immul2d φxABFx=BFx
27 26 mpteq2dva φxABFx=xABFx
28 8 imcld φxAFx
29 eqidd φxAFx=xAFx
30 6 7 28 10 29 offval2 φA×B×fxAFx=xABFx
31 27 30 eqtr4d φxABFx=A×B×fxAFx
32 21 simprd φxAFxMblFn
33 28 fmpttd φxAFx:A
34 32 2 33 mbfmulc2lem φA×B×fxAFxMblFn
35 31 34 eqeltrd φxABFxMblFn
36 2 recnd φB
37 36 adantr φxAB
38 37 8 mulcld φxABFx
39 38 ismbfcn2 φxABFxMblFnxABFxMblFnxABFxMblFn
40 25 35 39 mpbir2and φxABFxMblFn
41 12 40 eqeltrd φA×B×fFMblFn