Metamath Proof Explorer


Theorem mendval

Description: Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015)

Ref Expression
Hypotheses mendval.b B=MLMHomM
mendval.p +˙=xB,yBx+Mfy
mendval.t ×˙=xB,yBxy
mendval.s S=ScalarM
mendval.v ·˙=xBaseS,yBBaseM×xMfy
Assertion mendval MXMEndoM=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙

Proof

Step Hyp Ref Expression
1 mendval.b B=MLMHomM
2 mendval.p +˙=xB,yBx+Mfy
3 mendval.t ×˙=xB,yBxy
4 mendval.s S=ScalarM
5 mendval.v ·˙=xBaseS,yBBaseM×xMfy
6 elex MXMV
7 oveq12 m=Mm=MmLMHomm=MLMHomM
8 7 anidms m=MmLMHomm=MLMHomM
9 8 1 eqtr4di m=MmLMHomm=B
10 9 csbeq1d m=MmLMHomm/bBasendxb+ndxxb,ybx+mfyndxxb,ybxyScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy=B/bBasendxb+ndxxb,ybx+mfyndxxb,ybxyScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy
11 ovex mLMHommV
12 9 11 eqeltrrdi m=MBV
13 simpr m=Mb=Bb=B
14 13 opeq2d m=Mb=BBasendxb=BasendxB
15 fveq2 m=M+m=+M
16 15 ofeqd m=Mf+m=f+M
17 16 oveqdr m=Mb=Bx+mfy=x+Mfy
18 13 13 17 mpoeq123dv m=Mb=Bxb,ybx+mfy=xB,yBx+Mfy
19 18 2 eqtr4di m=Mb=Bxb,ybx+mfy=+˙
20 19 opeq2d m=Mb=B+ndxxb,ybx+mfy=+ndx+˙
21 eqidd m=Mb=Bxy=xy
22 13 13 21 mpoeq123dv m=Mb=Bxb,ybxy=xB,yBxy
23 22 3 eqtr4di m=Mb=Bxb,ybxy=×˙
24 23 opeq2d m=Mb=Bndxxb,ybxy=ndx×˙
25 14 20 24 tpeq123d m=Mb=BBasendxb+ndxxb,ybx+mfyndxxb,ybxy=BasendxB+ndx+˙ndx×˙
26 fveq2 m=MScalarm=ScalarM
27 26 adantr m=Mb=BScalarm=ScalarM
28 27 4 eqtr4di m=Mb=BScalarm=S
29 28 opeq2d m=Mb=BScalarndxScalarm=ScalarndxS
30 28 fveq2d m=Mb=BBaseScalarm=BaseS
31 fveq2 m=Mm=M
32 31 adantr m=Mb=Bm=M
33 32 ofeqd m=Mb=Bfm=fM
34 fveq2 m=MBasem=BaseM
35 34 adantr m=Mb=BBasem=BaseM
36 35 xpeq1d m=Mb=BBasem×x=BaseM×x
37 eqidd m=Mb=By=y
38 33 36 37 oveq123d m=Mb=BBasem×xmfy=BaseM×xMfy
39 30 13 38 mpoeq123dv m=Mb=BxBaseScalarm,ybBasem×xmfy=xBaseS,yBBaseM×xMfy
40 39 5 eqtr4di m=Mb=BxBaseScalarm,ybBasem×xmfy=·˙
41 40 opeq2d m=Mb=BndxxBaseScalarm,ybBasem×xmfy=ndx·˙
42 29 41 preq12d m=Mb=BScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy=ScalarndxSndx·˙
43 25 42 uneq12d m=Mb=BBasendxb+ndxxb,ybx+mfyndxxb,ybxyScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙
44 12 43 csbied m=MB/bBasendxb+ndxxb,ybx+mfyndxxb,ybxyScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙
45 10 44 eqtrd m=MmLMHomm/bBasendxb+ndxxb,ybx+mfyndxxb,ybxyScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙
46 df-mend MEndo=mVmLMHomm/bBasendxb+ndxxb,ybx+mfyndxxb,ybxyScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy
47 tpex BasendxB+ndx+˙ndx×˙V
48 prex ScalarndxSndx·˙V
49 47 48 unex BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙V
50 45 46 49 fvmpt MVMEndoM=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙
51 6 50 syl MXMEndoM=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙