Metamath Proof Explorer


Theorem metakunt15

Description: Construction of another permutation. (Contributed by metakunt, 25-May-2024)

Ref Expression
Hypotheses metakunt15.1 φM
metakunt15.2 φI
metakunt15.3 φIM
metakunt15.4 F=x1I1x+M-I
Assertion metakunt15 φF:1I11-1 ontoM-I+1M1

Proof

Step Hyp Ref Expression
1 metakunt15.1 φM
2 metakunt15.2 φI
3 metakunt15.3 φIM
4 metakunt15.4 F=x1I1x+M-I
5 1zzd φx1I11
6 2 nnzd φI
7 6 adantr φx1I1I
8 7 5 zsubcld φx1I1I1
9 1 nnzd φM
10 9 adantr φx1I1M
11 10 7 zsubcld φx1I1MI
12 simpr φx1I1x1I1
13 elfz3 MIMIMIMI
14 11 13 syl φx1I1MIMIMI
15 11 zcnd φx1I1MI
16 1cnd φx1I11
17 15 16 addcomd φx1I1M-I+1=1+M-I
18 1 nncnd φM
19 2 nncnd φI
20 1cnd φ1
21 18 19 20 npncand φMI+I-1=M1
22 21 eqcomd φM1=MI+I-1
23 18 19 subcld φMI
24 19 20 subcld φI1
25 23 24 addcomd φMI+I-1=I1+M-I
26 22 25 eqtrd φM1=I1+M-I
27 26 adantr φx1I1M1=I1+M-I
28 5 8 11 11 12 14 17 27 fzadd2d φx1I1x+M-IM-I+1M1
29 1zzd φyM-I+1M11
30 6 adantr φyM-I+1M1I
31 30 29 zsubcld φyM-I+1M1I1
32 elfzelz yM-I+1M1y
33 32 adantl φyM-I+1M1y
34 9 adantr φyM-I+1M1M
35 34 30 zsubcld φyM-I+1M1MI
36 33 35 zsubcld φyM-I+1M1yMI
37 elfzle1 yM-I+1M1M-I+1y
38 37 adantl φyM-I+1M1M-I+1y
39 35 zred φyM-I+1M1MI
40 1red φyM-I+1M11
41 33 zred φyM-I+1M1y
42 39 40 41 leaddsub2d φyM-I+1M1M-I+1y1yMI
43 38 42 mpbid φyM-I+1M11yMI
44 elfzle2 yM-I+1M1yM1
45 44 adantl φyM-I+1M1yM1
46 21 adantr φyM-I+1M1MI+I-1=M1
47 45 46 breqtrrd φyM-I+1M1yMI+I-1
48 31 zred φyM-I+1M1I1
49 41 39 48 lesubadd2d φyM-I+1M1yMII1yMI+I-1
50 47 49 mpbird φyM-I+1M1yMII1
51 29 31 36 43 50 elfzd φyM-I+1M1yMI1I1
52 eqcom yMI=xx=yMI
53 52 a1i φx1I1yM-I+1M1yMI=xx=yMI
54 32 zcnd yM-I+1M1y
55 54 ad2antll φx1I1yM-I+1M1y
56 18 adantr φx1I1yM-I+1M1M
57 19 adantr φx1I1yM-I+1M1I
58 56 57 subcld φx1I1yM-I+1M1MI
59 elfznn x1I1x
60 59 nncnd x1I1x
61 60 ad2antrl φx1I1yM-I+1M1x
62 55 58 61 subaddd φx1I1yM-I+1M1yMI=xM-I+x=y
63 53 62 bitr3d φx1I1yM-I+1M1x=yMIM-I+x=y
64 58 61 addcomd φx1I1yM-I+1M1M-I+x=x+M-I
65 64 eqeq1d φx1I1yM-I+1M1M-I+x=yx+M-I=y
66 eqcom x+M-I=yy=x+M-I
67 66 a1i φx1I1yM-I+1M1x+M-I=yy=x+M-I
68 65 67 bitrd φx1I1yM-I+1M1M-I+x=yy=x+M-I
69 63 68 bitrd φx1I1yM-I+1M1x=yMIy=x+M-I
70 4 28 51 69 f1o2d φF:1I11-1 ontoM-I+1M1