Metamath Proof Explorer


Theorem metss2lem

Description: Lemma for metss2 . (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypotheses metequiv.3 J=MetOpenC
metequiv.4 K=MetOpenD
metss2.1 φCMetX
metss2.2 φDMetX
metss2.3 φR+
metss2.4 φxXyXxCyRxDy
Assertion metss2lem φxXS+xballDSRxballCS

Proof

Step Hyp Ref Expression
1 metequiv.3 J=MetOpenC
2 metequiv.4 K=MetOpenD
3 metss2.1 φCMetX
4 metss2.2 φDMetX
5 metss2.3 φR+
6 metss2.4 φxXyXxCyRxDy
7 4 ad2antrr φxXS+yXDMetX
8 simplrl φxXS+yXxX
9 simpr φxXS+yXyX
10 metcl DMetXxXyXxDy
11 7 8 9 10 syl3anc φxXS+yXxDy
12 simplrr φxXS+yXS+
13 12 rpred φxXS+yXS
14 5 ad2antrr φxXS+yXR+
15 11 13 14 ltmuldiv2d φxXS+yXRxDy<SxDy<SR
16 6 anassrs φxXyXxCyRxDy
17 16 adantlrr φxXS+yXxCyRxDy
18 3 ad2antrr φxXS+yXCMetX
19 metcl CMetXxXyXxCy
20 18 8 9 19 syl3anc φxXS+yXxCy
21 14 rpred φxXS+yXR
22 21 11 remulcld φxXS+yXRxDy
23 lelttr xCyRxDySxCyRxDyRxDy<SxCy<S
24 20 22 13 23 syl3anc φxXS+yXxCyRxDyRxDy<SxCy<S
25 17 24 mpand φxXS+yXRxDy<SxCy<S
26 15 25 sylbird φxXS+yXxDy<SRxCy<S
27 26 ss2rabdv φxXS+yX|xDy<SRyX|xCy<S
28 metxmet DMetXD∞MetX
29 4 28 syl φD∞MetX
30 29 adantr φxXS+D∞MetX
31 simprl φxXS+xX
32 simpr xXS+S+
33 rpdivcl S+R+SR+
34 32 5 33 syl2anr φxXS+SR+
35 34 rpxrd φxXS+SR*
36 blval D∞MetXxXSR*xballDSR=yX|xDy<SR
37 30 31 35 36 syl3anc φxXS+xballDSR=yX|xDy<SR
38 metxmet CMetXC∞MetX
39 3 38 syl φC∞MetX
40 39 adantr φxXS+C∞MetX
41 rpxr S+S*
42 41 ad2antll φxXS+S*
43 blval C∞MetXxXS*xballCS=yX|xCy<S
44 40 31 42 43 syl3anc φxXS+xballCS=yX|xCy<S
45 27 37 44 3sstr4d φxXS+xballDSRxballCS