Description: Lemma for metss2 . (Contributed by Mario Carneiro, 14-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metequiv.3 | |
|
metequiv.4 | |
||
metss2.1 | |
||
metss2.2 | |
||
metss2.3 | |
||
metss2.4 | |
||
Assertion | metss2lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metequiv.3 | |
|
2 | metequiv.4 | |
|
3 | metss2.1 | |
|
4 | metss2.2 | |
|
5 | metss2.3 | |
|
6 | metss2.4 | |
|
7 | 4 | ad2antrr | |
8 | simplrl | |
|
9 | simpr | |
|
10 | metcl | |
|
11 | 7 8 9 10 | syl3anc | |
12 | simplrr | |
|
13 | 12 | rpred | |
14 | 5 | ad2antrr | |
15 | 11 13 14 | ltmuldiv2d | |
16 | 6 | anassrs | |
17 | 16 | adantlrr | |
18 | 3 | ad2antrr | |
19 | metcl | |
|
20 | 18 8 9 19 | syl3anc | |
21 | 14 | rpred | |
22 | 21 11 | remulcld | |
23 | lelttr | |
|
24 | 20 22 13 23 | syl3anc | |
25 | 17 24 | mpand | |
26 | 15 25 | sylbird | |
27 | 26 | ss2rabdv | |
28 | metxmet | |
|
29 | 4 28 | syl | |
30 | 29 | adantr | |
31 | simprl | |
|
32 | simpr | |
|
33 | rpdivcl | |
|
34 | 32 5 33 | syl2anr | |
35 | 34 | rpxrd | |
36 | blval | |
|
37 | 30 31 35 36 | syl3anc | |
38 | metxmet | |
|
39 | 3 38 | syl | |
40 | 39 | adantr | |
41 | rpxr | |
|
42 | 41 | ad2antll | |
43 | blval | |
|
44 | 40 31 42 43 | syl3anc | |
45 | 27 37 44 | 3sstr4d | |