Metamath Proof Explorer


Theorem mgmhmco

Description: The composition of magma homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020)

Ref Expression
Assertion mgmhmco FTMgmHomUGSMgmHomTFGSMgmHomU

Proof

Step Hyp Ref Expression
1 mgmhmrcl FTMgmHomUTMgmUMgm
2 1 simprd FTMgmHomUUMgm
3 mgmhmrcl GSMgmHomTSMgmTMgm
4 3 simpld GSMgmHomTSMgm
5 2 4 anim12ci FTMgmHomUGSMgmHomTSMgmUMgm
6 eqid BaseT=BaseT
7 eqid BaseU=BaseU
8 6 7 mgmhmf FTMgmHomUF:BaseTBaseU
9 eqid BaseS=BaseS
10 9 6 mgmhmf GSMgmHomTG:BaseSBaseT
11 fco F:BaseTBaseUG:BaseSBaseTFG:BaseSBaseU
12 8 10 11 syl2an FTMgmHomUGSMgmHomTFG:BaseSBaseU
13 eqid +S=+S
14 eqid +T=+T
15 9 13 14 mgmhmlin GSMgmHomTxBaseSyBaseSGx+Sy=Gx+TGy
16 15 3expb GSMgmHomTxBaseSyBaseSGx+Sy=Gx+TGy
17 16 adantll FTMgmHomUGSMgmHomTxBaseSyBaseSGx+Sy=Gx+TGy
18 17 fveq2d FTMgmHomUGSMgmHomTxBaseSyBaseSFGx+Sy=FGx+TGy
19 simpll FTMgmHomUGSMgmHomTxBaseSyBaseSFTMgmHomU
20 10 ad2antlr FTMgmHomUGSMgmHomTxBaseSyBaseSG:BaseSBaseT
21 simprl FTMgmHomUGSMgmHomTxBaseSyBaseSxBaseS
22 20 21 ffvelcdmd FTMgmHomUGSMgmHomTxBaseSyBaseSGxBaseT
23 simprr FTMgmHomUGSMgmHomTxBaseSyBaseSyBaseS
24 20 23 ffvelcdmd FTMgmHomUGSMgmHomTxBaseSyBaseSGyBaseT
25 eqid +U=+U
26 6 14 25 mgmhmlin FTMgmHomUGxBaseTGyBaseTFGx+TGy=FGx+UFGy
27 19 22 24 26 syl3anc FTMgmHomUGSMgmHomTxBaseSyBaseSFGx+TGy=FGx+UFGy
28 18 27 eqtrd FTMgmHomUGSMgmHomTxBaseSyBaseSFGx+Sy=FGx+UFGy
29 4 adantl FTMgmHomUGSMgmHomTSMgm
30 9 13 mgmcl SMgmxBaseSyBaseSx+SyBaseS
31 30 3expb SMgmxBaseSyBaseSx+SyBaseS
32 29 31 sylan FTMgmHomUGSMgmHomTxBaseSyBaseSx+SyBaseS
33 fvco3 G:BaseSBaseTx+SyBaseSFGx+Sy=FGx+Sy
34 20 32 33 syl2anc FTMgmHomUGSMgmHomTxBaseSyBaseSFGx+Sy=FGx+Sy
35 fvco3 G:BaseSBaseTxBaseSFGx=FGx
36 20 21 35 syl2anc FTMgmHomUGSMgmHomTxBaseSyBaseSFGx=FGx
37 fvco3 G:BaseSBaseTyBaseSFGy=FGy
38 20 23 37 syl2anc FTMgmHomUGSMgmHomTxBaseSyBaseSFGy=FGy
39 36 38 oveq12d FTMgmHomUGSMgmHomTxBaseSyBaseSFGx+UFGy=FGx+UFGy
40 28 34 39 3eqtr4d FTMgmHomUGSMgmHomTxBaseSyBaseSFGx+Sy=FGx+UFGy
41 40 ralrimivva FTMgmHomUGSMgmHomTxBaseSyBaseSFGx+Sy=FGx+UFGy
42 12 41 jca FTMgmHomUGSMgmHomTFG:BaseSBaseUxBaseSyBaseSFGx+Sy=FGx+UFGy
43 9 7 13 25 ismgmhm FGSMgmHomUSMgmUMgmFG:BaseSBaseUxBaseSyBaseSFGx+Sy=FGx+UFGy
44 5 42 43 sylanbrc FTMgmHomUGSMgmHomTFGSMgmHomU