| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgmhmpropd.a |
|
| 2 |
|
mgmhmpropd.b |
|
| 3 |
|
mgmhmpropd.c |
|
| 4 |
|
mgmhmpropd.d |
|
| 5 |
|
mgmhmpropd.0 |
|
| 6 |
|
mgmhmpropd.C |
|
| 7 |
|
mgmhmpropd.e |
|
| 8 |
|
mgmhmpropd.f |
|
| 9 |
7
|
fveq2d |
|
| 10 |
9
|
adantlr |
|
| 11 |
|
ffvelcdm |
|
| 12 |
|
ffvelcdm |
|
| 13 |
11 12
|
anim12dan |
|
| 14 |
8
|
ralrimivva |
|
| 15 |
|
oveq1 |
|
| 16 |
|
oveq1 |
|
| 17 |
15 16
|
eqeq12d |
|
| 18 |
|
oveq2 |
|
| 19 |
|
oveq2 |
|
| 20 |
18 19
|
eqeq12d |
|
| 21 |
17 20
|
cbvral2vw |
|
| 22 |
14 21
|
sylib |
|
| 23 |
|
oveq1 |
|
| 24 |
|
oveq1 |
|
| 25 |
23 24
|
eqeq12d |
|
| 26 |
|
oveq2 |
|
| 27 |
|
oveq2 |
|
| 28 |
26 27
|
eqeq12d |
|
| 29 |
25 28
|
rspc2va |
|
| 30 |
13 22 29
|
syl2anr |
|
| 31 |
30
|
anassrs |
|
| 32 |
10 31
|
eqeq12d |
|
| 33 |
32
|
2ralbidva |
|
| 34 |
33
|
adantrl |
|
| 35 |
|
raleq |
|
| 36 |
35
|
raleqbi1dv |
|
| 37 |
1 36
|
syl |
|
| 38 |
37
|
adantr |
|
| 39 |
|
raleq |
|
| 40 |
39
|
raleqbi1dv |
|
| 41 |
3 40
|
syl |
|
| 42 |
41
|
adantr |
|
| 43 |
34 38 42
|
3bitr3d |
|
| 44 |
43
|
anassrs |
|
| 45 |
44
|
pm5.32da |
|
| 46 |
1 2
|
feq23d |
|
| 47 |
46
|
adantr |
|
| 48 |
47
|
anbi1d |
|
| 49 |
3 4
|
feq23d |
|
| 50 |
49
|
adantr |
|
| 51 |
50
|
anbi1d |
|
| 52 |
45 48 51
|
3bitr3d |
|
| 53 |
52
|
pm5.32da |
|
| 54 |
1 3 5 7
|
mgmpropd |
|
| 55 |
2 4 6 8
|
mgmpropd |
|
| 56 |
54 55
|
anbi12d |
|
| 57 |
56
|
anbi1d |
|
| 58 |
53 57
|
bitrd |
|
| 59 |
|
eqid |
|
| 60 |
|
eqid |
|
| 61 |
|
eqid |
|
| 62 |
|
eqid |
|
| 63 |
59 60 61 62
|
ismgmhm |
|
| 64 |
|
eqid |
|
| 65 |
|
eqid |
|
| 66 |
|
eqid |
|
| 67 |
|
eqid |
|
| 68 |
64 65 66 67
|
ismgmhm |
|
| 69 |
58 63 68
|
3bitr4g |
|
| 70 |
69
|
eqrdv |
|