Metamath Proof Explorer


Theorem mhmpropd

Description: Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 7-Nov-2015)

Ref Expression
Hypotheses mhmpropd.a φB=BaseJ
mhmpropd.b φC=BaseK
mhmpropd.c φB=BaseL
mhmpropd.d φC=BaseM
mhmpropd.e φxByBx+Jy=x+Ly
mhmpropd.f φxCyCx+Ky=x+My
Assertion mhmpropd φJMndHomK=LMndHomM

Proof

Step Hyp Ref Expression
1 mhmpropd.a φB=BaseJ
2 mhmpropd.b φC=BaseK
3 mhmpropd.c φB=BaseL
4 mhmpropd.d φC=BaseM
5 mhmpropd.e φxByBx+Jy=x+Ly
6 mhmpropd.f φxCyCx+Ky=x+My
7 5 fveq2d φxByBfx+Jy=fx+Ly
8 7 adantlr φf:BCxByBfx+Jy=fx+Ly
9 ffvelcdm f:BCxBfxC
10 ffvelcdm f:BCyBfyC
11 9 10 anim12dan f:BCxByBfxCfyC
12 6 ralrimivva φxCyCx+Ky=x+My
13 oveq1 x=wx+Ky=w+Ky
14 oveq1 x=wx+My=w+My
15 13 14 eqeq12d x=wx+Ky=x+Myw+Ky=w+My
16 oveq2 y=zw+Ky=w+Kz
17 oveq2 y=zw+My=w+Mz
18 16 17 eqeq12d y=zw+Ky=w+Myw+Kz=w+Mz
19 15 18 cbvral2vw xCyCx+Ky=x+MywCzCw+Kz=w+Mz
20 12 19 sylib φwCzCw+Kz=w+Mz
21 oveq1 w=fxw+Kz=fx+Kz
22 oveq1 w=fxw+Mz=fx+Mz
23 21 22 eqeq12d w=fxw+Kz=w+Mzfx+Kz=fx+Mz
24 oveq2 z=fyfx+Kz=fx+Kfy
25 oveq2 z=fyfx+Mz=fx+Mfy
26 24 25 eqeq12d z=fyfx+Kz=fx+Mzfx+Kfy=fx+Mfy
27 23 26 rspc2va fxCfyCwCzCw+Kz=w+Mzfx+Kfy=fx+Mfy
28 11 20 27 syl2anr φf:BCxByBfx+Kfy=fx+Mfy
29 28 anassrs φf:BCxByBfx+Kfy=fx+Mfy
30 8 29 eqeq12d φf:BCxByBfx+Jy=fx+Kfyfx+Ly=fx+Mfy
31 30 2ralbidva φf:BCxByBfx+Jy=fx+KfyxByBfx+Ly=fx+Mfy
32 31 adantrl φJMndKMndf:BCxByBfx+Jy=fx+KfyxByBfx+Ly=fx+Mfy
33 raleq B=BaseJyBfx+Jy=fx+KfyyBaseJfx+Jy=fx+Kfy
34 33 raleqbi1dv B=BaseJxByBfx+Jy=fx+KfyxBaseJyBaseJfx+Jy=fx+Kfy
35 1 34 syl φxByBfx+Jy=fx+KfyxBaseJyBaseJfx+Jy=fx+Kfy
36 35 adantr φJMndKMndf:BCxByBfx+Jy=fx+KfyxBaseJyBaseJfx+Jy=fx+Kfy
37 raleq B=BaseLyBfx+Ly=fx+MfyyBaseLfx+Ly=fx+Mfy
38 37 raleqbi1dv B=BaseLxByBfx+Ly=fx+MfyxBaseLyBaseLfx+Ly=fx+Mfy
39 3 38 syl φxByBfx+Ly=fx+MfyxBaseLyBaseLfx+Ly=fx+Mfy
40 39 adantr φJMndKMndf:BCxByBfx+Ly=fx+MfyxBaseLyBaseLfx+Ly=fx+Mfy
41 32 36 40 3bitr3d φJMndKMndf:BCxBaseJyBaseJfx+Jy=fx+KfyxBaseLyBaseLfx+Ly=fx+Mfy
42 1 adantr φJMndKMndf:BCB=BaseJ
43 3 adantr φJMndKMndf:BCB=BaseL
44 5 adantlr φJMndKMndf:BCxByBx+Jy=x+Ly
45 42 43 44 grpidpropd φJMndKMndf:BC0J=0L
46 45 fveq2d φJMndKMndf:BCf0J=f0L
47 2 adantr φJMndKMndf:BCC=BaseK
48 4 adantr φJMndKMndf:BCC=BaseM
49 6 adantlr φJMndKMndf:BCxCyCx+Ky=x+My
50 47 48 49 grpidpropd φJMndKMndf:BC0K=0M
51 46 50 eqeq12d φJMndKMndf:BCf0J=0Kf0L=0M
52 41 51 anbi12d φJMndKMndf:BCxBaseJyBaseJfx+Jy=fx+Kfyf0J=0KxBaseLyBaseLfx+Ly=fx+Mfyf0L=0M
53 52 anassrs φJMndKMndf:BCxBaseJyBaseJfx+Jy=fx+Kfyf0J=0KxBaseLyBaseLfx+Ly=fx+Mfyf0L=0M
54 53 pm5.32da φJMndKMndf:BCxBaseJyBaseJfx+Jy=fx+Kfyf0J=0Kf:BCxBaseLyBaseLfx+Ly=fx+Mfyf0L=0M
55 1 2 feq23d φf:BCf:BaseJBaseK
56 55 adantr φJMndKMndf:BCf:BaseJBaseK
57 56 anbi1d φJMndKMndf:BCxBaseJyBaseJfx+Jy=fx+Kfyf0J=0Kf:BaseJBaseKxBaseJyBaseJfx+Jy=fx+Kfyf0J=0K
58 3 4 feq23d φf:BCf:BaseLBaseM
59 58 adantr φJMndKMndf:BCf:BaseLBaseM
60 59 anbi1d φJMndKMndf:BCxBaseLyBaseLfx+Ly=fx+Mfyf0L=0Mf:BaseLBaseMxBaseLyBaseLfx+Ly=fx+Mfyf0L=0M
61 54 57 60 3bitr3d φJMndKMndf:BaseJBaseKxBaseJyBaseJfx+Jy=fx+Kfyf0J=0Kf:BaseLBaseMxBaseLyBaseLfx+Ly=fx+Mfyf0L=0M
62 3anass f:BaseJBaseKxBaseJyBaseJfx+Jy=fx+Kfyf0J=0Kf:BaseJBaseKxBaseJyBaseJfx+Jy=fx+Kfyf0J=0K
63 3anass f:BaseLBaseMxBaseLyBaseLfx+Ly=fx+Mfyf0L=0Mf:BaseLBaseMxBaseLyBaseLfx+Ly=fx+Mfyf0L=0M
64 61 62 63 3bitr4g φJMndKMndf:BaseJBaseKxBaseJyBaseJfx+Jy=fx+Kfyf0J=0Kf:BaseLBaseMxBaseLyBaseLfx+Ly=fx+Mfyf0L=0M
65 64 pm5.32da φJMndKMndf:BaseJBaseKxBaseJyBaseJfx+Jy=fx+Kfyf0J=0KJMndKMndf:BaseLBaseMxBaseLyBaseLfx+Ly=fx+Mfyf0L=0M
66 1 3 5 mndpropd φJMndLMnd
67 2 4 6 mndpropd φKMndMMnd
68 66 67 anbi12d φJMndKMndLMndMMnd
69 68 anbi1d φJMndKMndf:BaseLBaseMxBaseLyBaseLfx+Ly=fx+Mfyf0L=0MLMndMMndf:BaseLBaseMxBaseLyBaseLfx+Ly=fx+Mfyf0L=0M
70 65 69 bitrd φJMndKMndf:BaseJBaseKxBaseJyBaseJfx+Jy=fx+Kfyf0J=0KLMndMMndf:BaseLBaseMxBaseLyBaseLfx+Ly=fx+Mfyf0L=0M
71 eqid BaseJ=BaseJ
72 eqid BaseK=BaseK
73 eqid +J=+J
74 eqid +K=+K
75 eqid 0J=0J
76 eqid 0K=0K
77 71 72 73 74 75 76 ismhm fJMndHomKJMndKMndf:BaseJBaseKxBaseJyBaseJfx+Jy=fx+Kfyf0J=0K
78 eqid BaseL=BaseL
79 eqid BaseM=BaseM
80 eqid +L=+L
81 eqid +M=+M
82 eqid 0L=0L
83 eqid 0M=0M
84 78 79 80 81 82 83 ismhm fLMndHomMLMndMMndf:BaseLBaseMxBaseLyBaseLfx+Ly=fx+Mfyf0L=0M
85 70 77 84 3bitr4g φfJMndHomKfLMndHomM
86 85 eqrdv φJMndHomK=LMndHomM