| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhmpropd.a |  | 
						
							| 2 |  | mhmpropd.b |  | 
						
							| 3 |  | mhmpropd.c |  | 
						
							| 4 |  | mhmpropd.d |  | 
						
							| 5 |  | mhmpropd.e |  | 
						
							| 6 |  | mhmpropd.f |  | 
						
							| 7 | 5 | fveq2d |  | 
						
							| 8 | 7 | adantlr |  | 
						
							| 9 |  | ffvelcdm |  | 
						
							| 10 |  | ffvelcdm |  | 
						
							| 11 | 9 10 | anim12dan |  | 
						
							| 12 | 6 | ralrimivva |  | 
						
							| 13 |  | oveq1 |  | 
						
							| 14 |  | oveq1 |  | 
						
							| 15 | 13 14 | eqeq12d |  | 
						
							| 16 |  | oveq2 |  | 
						
							| 17 |  | oveq2 |  | 
						
							| 18 | 16 17 | eqeq12d |  | 
						
							| 19 | 15 18 | cbvral2vw |  | 
						
							| 20 | 12 19 | sylib |  | 
						
							| 21 |  | oveq1 |  | 
						
							| 22 |  | oveq1 |  | 
						
							| 23 | 21 22 | eqeq12d |  | 
						
							| 24 |  | oveq2 |  | 
						
							| 25 |  | oveq2 |  | 
						
							| 26 | 24 25 | eqeq12d |  | 
						
							| 27 | 23 26 | rspc2va |  | 
						
							| 28 | 11 20 27 | syl2anr |  | 
						
							| 29 | 28 | anassrs |  | 
						
							| 30 | 8 29 | eqeq12d |  | 
						
							| 31 | 30 | 2ralbidva |  | 
						
							| 32 | 31 | adantrl |  | 
						
							| 33 |  | raleq |  | 
						
							| 34 | 33 | raleqbi1dv |  | 
						
							| 35 | 1 34 | syl |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 |  | raleq |  | 
						
							| 38 | 37 | raleqbi1dv |  | 
						
							| 39 | 3 38 | syl |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 32 36 40 | 3bitr3d |  | 
						
							| 42 | 1 | adantr |  | 
						
							| 43 | 3 | adantr |  | 
						
							| 44 | 5 | adantlr |  | 
						
							| 45 | 42 43 44 | grpidpropd |  | 
						
							| 46 | 45 | fveq2d |  | 
						
							| 47 | 2 | adantr |  | 
						
							| 48 | 4 | adantr |  | 
						
							| 49 | 6 | adantlr |  | 
						
							| 50 | 47 48 49 | grpidpropd |  | 
						
							| 51 | 46 50 | eqeq12d |  | 
						
							| 52 | 41 51 | anbi12d |  | 
						
							| 53 | 52 | anassrs |  | 
						
							| 54 | 53 | pm5.32da |  | 
						
							| 55 | 1 2 | feq23d |  | 
						
							| 56 | 55 | adantr |  | 
						
							| 57 | 56 | anbi1d |  | 
						
							| 58 | 3 4 | feq23d |  | 
						
							| 59 | 58 | adantr |  | 
						
							| 60 | 59 | anbi1d |  | 
						
							| 61 | 54 57 60 | 3bitr3d |  | 
						
							| 62 |  | 3anass |  | 
						
							| 63 |  | 3anass |  | 
						
							| 64 | 61 62 63 | 3bitr4g |  | 
						
							| 65 | 64 | pm5.32da |  | 
						
							| 66 | 1 3 5 | mndpropd |  | 
						
							| 67 | 2 4 6 | mndpropd |  | 
						
							| 68 | 66 67 | anbi12d |  | 
						
							| 69 | 68 | anbi1d |  | 
						
							| 70 | 65 69 | bitrd |  | 
						
							| 71 |  | eqid |  | 
						
							| 72 |  | eqid |  | 
						
							| 73 |  | eqid |  | 
						
							| 74 |  | eqid |  | 
						
							| 75 |  | eqid |  | 
						
							| 76 |  | eqid |  | 
						
							| 77 | 71 72 73 74 75 76 | ismhm |  | 
						
							| 78 |  | eqid |  | 
						
							| 79 |  | eqid |  | 
						
							| 80 |  | eqid |  | 
						
							| 81 |  | eqid |  | 
						
							| 82 |  | eqid |  | 
						
							| 83 |  | eqid |  | 
						
							| 84 | 78 79 80 81 82 83 | ismhm |  | 
						
							| 85 | 70 77 84 | 3bitr4g |  | 
						
							| 86 | 85 | eqrdv |  |