Metamath Proof Explorer


Theorem minplyval

Description: Expand the value of the minimal polynomial ( MA ) for a given element A . It is defined as the unique monic polynomial of minimal degree which annihilates A . By ply1annig1p , that polynomial generates the ideal of the annihilators of A . (Contributed by Thierry Arnoux, 9-Feb-2025)

Ref Expression
Hypotheses ply1annig1p.o O=EevalSub1F
ply1annig1p.p P=Poly1E𝑠F
ply1annig1p.b B=BaseE
ply1annig1p.e φEField
ply1annig1p.f φFSubDRingE
ply1annig1p.a φAB
ply1annig1p.0 0˙=0E
ply1annig1p.q Q=qdomO|OqA=0˙
ply1annig1p.k K=RSpanP
ply1annig1p.g G=idlGen1pE𝑠F
minplyval.1 No typesetting found for |- M = ( E minPoly F ) with typecode |-
Assertion minplyval φMA=GQ

Proof

Step Hyp Ref Expression
1 ply1annig1p.o O=EevalSub1F
2 ply1annig1p.p P=Poly1E𝑠F
3 ply1annig1p.b B=BaseE
4 ply1annig1p.e φEField
5 ply1annig1p.f φFSubDRingE
6 ply1annig1p.a φAB
7 ply1annig1p.0 0˙=0E
8 ply1annig1p.q Q=qdomO|OqA=0˙
9 ply1annig1p.k K=RSpanP
10 ply1annig1p.g G=idlGen1pE𝑠F
11 minplyval.1 Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |-
12 4 elexd φEV
13 5 elexd φFV
14 3 fvexi BV
15 14 a1i φBV
16 15 mptexd φxBGqdomO|Oqx=0˙V
17 fveq2 e=EBasee=BaseE
18 17 3 eqtr4di e=EBasee=B
19 18 adantr e=Ef=FBasee=B
20 oveq12 e=Ef=Fe𝑠f=E𝑠F
21 20 fveq2d e=Ef=FidlGen1pe𝑠f=idlGen1pE𝑠F
22 21 10 eqtr4di e=Ef=FidlGen1pe𝑠f=G
23 oveq12 e=Ef=FeevalSub1f=EevalSub1F
24 23 1 eqtr4di e=Ef=FeevalSub1f=O
25 24 dmeqd e=Ef=FdomeevalSub1f=domO
26 24 fveq1d e=Ef=FeevalSub1fq=Oq
27 26 fveq1d e=Ef=FeevalSub1fqx=Oqx
28 fveq2 e=E0e=0E
29 28 adantr e=Ef=F0e=0E
30 29 7 eqtr4di e=Ef=F0e=0˙
31 27 30 eqeq12d e=Ef=FeevalSub1fqx=0eOqx=0˙
32 25 31 rabeqbidv e=Ef=FqdomeevalSub1f|eevalSub1fqx=0e=qdomO|Oqx=0˙
33 22 32 fveq12d e=Ef=FidlGen1pe𝑠fqdomeevalSub1f|eevalSub1fqx=0e=GqdomO|Oqx=0˙
34 19 33 mpteq12dv e=Ef=FxBaseeidlGen1pe𝑠fqdomeevalSub1f|eevalSub1fqx=0e=xBGqdomO|Oqx=0˙
35 df-minply Could not format minPoly = ( e e. _V , f e. _V |-> ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { q e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` q ) ` x ) = ( 0g ` e ) } ) ) ) : No typesetting found for |- minPoly = ( e e. _V , f e. _V |-> ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { q e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` q ) ` x ) = ( 0g ` e ) } ) ) ) with typecode |-
36 34 35 ovmpoga Could not format ( ( E e. _V /\ F e. _V /\ ( x e. B |-> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) e. _V ) -> ( E minPoly F ) = ( x e. B |-> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) ) : No typesetting found for |- ( ( E e. _V /\ F e. _V /\ ( x e. B |-> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) e. _V ) -> ( E minPoly F ) = ( x e. B |-> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) ) with typecode |-
37 12 13 16 36 syl3anc Could not format ( ph -> ( E minPoly F ) = ( x e. B |-> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) ) : No typesetting found for |- ( ph -> ( E minPoly F ) = ( x e. B |-> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) ) with typecode |-
38 11 37 eqtrid φM=xBGqdomO|Oqx=0˙
39 fveqeq2 x=AOqx=0˙OqA=0˙
40 39 rabbidv x=AqdomO|Oqx=0˙=qdomO|OqA=0˙
41 40 8 eqtr4di x=AqdomO|Oqx=0˙=Q
42 41 fveq2d x=AGqdomO|Oqx=0˙=GQ
43 42 adantl φx=AGqdomO|Oqx=0˙=GQ
44 fvexd φGQV
45 38 43 6 44 fvmptd φMA=GQ