Metamath Proof Explorer


Theorem monoord

Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005) (Revised by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses monoord.1 φ N M
monoord.2 φ k M N F k
monoord.3 φ k M N 1 F k F k + 1
Assertion monoord φ F M F N

Proof

Step Hyp Ref Expression
1 monoord.1 φ N M
2 monoord.2 φ k M N F k
3 monoord.3 φ k M N 1 F k F k + 1
4 eluzfz2 N M N M N
5 1 4 syl φ N M N
6 eleq1 x = M x M N M M N
7 fveq2 x = M F x = F M
8 7 breq2d x = M F M F x F M F M
9 6 8 imbi12d x = M x M N F M F x M M N F M F M
10 9 imbi2d x = M φ x M N F M F x φ M M N F M F M
11 eleq1 x = n x M N n M N
12 fveq2 x = n F x = F n
13 12 breq2d x = n F M F x F M F n
14 11 13 imbi12d x = n x M N F M F x n M N F M F n
15 14 imbi2d x = n φ x M N F M F x φ n M N F M F n
16 eleq1 x = n + 1 x M N n + 1 M N
17 fveq2 x = n + 1 F x = F n + 1
18 17 breq2d x = n + 1 F M F x F M F n + 1
19 16 18 imbi12d x = n + 1 x M N F M F x n + 1 M N F M F n + 1
20 19 imbi2d x = n + 1 φ x M N F M F x φ n + 1 M N F M F n + 1
21 eleq1 x = N x M N N M N
22 fveq2 x = N F x = F N
23 22 breq2d x = N F M F x F M F N
24 21 23 imbi12d x = N x M N F M F x N M N F M F N
25 24 imbi2d x = N φ x M N F M F x φ N M N F M F N
26 fveq2 k = M F k = F M
27 26 eleq1d k = M F k F M
28 2 ralrimiva φ k M N F k
29 eluzfz1 N M M M N
30 1 29 syl φ M M N
31 27 28 30 rspcdva φ F M
32 31 leidd φ F M F M
33 32 a1d φ M M N F M F M
34 peano2fzr n M n + 1 M N n M N
35 34 adantl φ n M n + 1 M N n M N
36 35 expr φ n M n + 1 M N n M N
37 36 imim1d φ n M n M N F M F n n + 1 M N F M F n
38 fveq2 k = n F k = F n
39 fvoveq1 k = n F k + 1 = F n + 1
40 38 39 breq12d k = n F k F k + 1 F n F n + 1
41 3 ralrimiva φ k M N 1 F k F k + 1
42 41 adantr φ n M n + 1 M N k M N 1 F k F k + 1
43 simprl φ n M n + 1 M N n M
44 eluzelz n M n
45 43 44 syl φ n M n + 1 M N n
46 simprr φ n M n + 1 M N n + 1 M N
47 elfzuz3 n + 1 M N N n + 1
48 46 47 syl φ n M n + 1 M N N n + 1
49 eluzp1m1 n N n + 1 N 1 n
50 45 48 49 syl2anc φ n M n + 1 M N N 1 n
51 elfzuzb n M N 1 n M N 1 n
52 43 50 51 sylanbrc φ n M n + 1 M N n M N 1
53 40 42 52 rspcdva φ n M n + 1 M N F n F n + 1
54 31 adantr φ n M n + 1 M N F M
55 38 eleq1d k = n F k F n
56 28 adantr φ n M n + 1 M N k M N F k
57 55 56 35 rspcdva φ n M n + 1 M N F n
58 fveq2 k = n + 1 F k = F n + 1
59 58 eleq1d k = n + 1 F k F n + 1
60 59 56 46 rspcdva φ n M n + 1 M N F n + 1
61 letr F M F n F n + 1 F M F n F n F n + 1 F M F n + 1
62 54 57 60 61 syl3anc φ n M n + 1 M N F M F n F n F n + 1 F M F n + 1
63 53 62 mpan2d φ n M n + 1 M N F M F n F M F n + 1
64 37 63 animpimp2impd n M φ n M N F M F n φ n + 1 M N F M F n + 1
65 10 15 20 25 33 64 uzind4i N M φ N M N F M F N
66 1 65 mpcom φ N M N F M F N
67 5 66 mpd φ F M F N