Metamath Proof Explorer


Theorem motcgrg

Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P=BaseG
ismot.m -˙=distG
motgrp.1 φGV
motgrp.i I=BasendxGIsmtG+ndxfGIsmtG,gGIsmtGfg
motcgrg.r ˙=𝒢G
motcgrg.t φTWordP
motcgrg.f φFGIsmtG
Assertion motcgrg φFT˙T

Proof

Step Hyp Ref Expression
1 ismot.p P=BaseG
2 ismot.m -˙=distG
3 motgrp.1 φGV
4 motgrp.i I=BasendxGIsmtG+ndxfGIsmtG,gGIsmtGfg
5 motcgrg.r ˙=𝒢G
6 motcgrg.t φTWordP
7 motcgrg.f φFGIsmtG
8 simpr φn0T:0..^nPT:0..^nP
9 8 adantr φn0T:0..^nPadomFTbdomFTT:0..^nP
10 simprl φn0T:0..^nPadomFTbdomFTadomFT
11 1 2 3 7 motf1o φF:P1-1 ontoP
12 f1of F:P1-1 ontoPF:PP
13 11 12 syl φF:PP
14 13 ad2antrr φn0T:0..^nPF:PP
15 fco F:PPT:0..^nPFT:0..^nP
16 14 8 15 syl2anc φn0T:0..^nPFT:0..^nP
17 16 adantr φn0T:0..^nPadomFTbdomFTFT:0..^nP
18 17 fdmd φn0T:0..^nPadomFTbdomFTdomFT=0..^n
19 10 18 eleqtrd φn0T:0..^nPadomFTbdomFTa0..^n
20 fvco3 T:0..^nPa0..^nFTa=FTa
21 9 19 20 syl2anc φn0T:0..^nPadomFTbdomFTFTa=FTa
22 simprr φn0T:0..^nPadomFTbdomFTbdomFT
23 22 18 eleqtrd φn0T:0..^nPadomFTbdomFTb0..^n
24 fvco3 T:0..^nPb0..^nFTb=FTb
25 9 23 24 syl2anc φn0T:0..^nPadomFTbdomFTFTb=FTb
26 21 25 oveq12d φn0T:0..^nPadomFTbdomFTFTa-˙FTb=FTa-˙FTb
27 3 ad2antrr φn0T:0..^nPGV
28 27 adantr φn0T:0..^nPadomFTbdomFTGV
29 9 19 ffvelcdmd φn0T:0..^nPadomFTbdomFTTaP
30 9 23 ffvelcdmd φn0T:0..^nPadomFTbdomFTTbP
31 7 ad3antrrr φn0T:0..^nPadomFTbdomFTFGIsmtG
32 1 2 28 29 30 31 motcgr φn0T:0..^nPadomFTbdomFTFTa-˙FTb=Ta-˙Tb
33 26 32 eqtrd φn0T:0..^nPadomFTbdomFTFTa-˙FTb=Ta-˙Tb
34 33 ralrimivva φn0T:0..^nPadomFTbdomFTFTa-˙FTb=Ta-˙Tb
35 fzo0ssnn0 0..^n0
36 nn0ssre 0
37 35 36 sstri 0..^n
38 37 a1i φn0T:0..^nP0..^n
39 1 2 5 27 38 16 8 iscgrgd φn0T:0..^nPFT˙TadomFTbdomFTFTa-˙FTb=Ta-˙Tb
40 34 39 mpbird φn0T:0..^nPFT˙T
41 iswrd TWordPn0T:0..^nP
42 6 41 sylib φn0T:0..^nP
43 40 42 r19.29a φFT˙T