Description: The function H mapping polynomials p to their coefficient given a bag of variables F is a group homomorphism. (Contributed by SN, 15-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mplmapghm.p | |
|
mplmapghm.b | |
||
mplmapghm.d | |
||
mplmapghm.h | |
||
mplmapghm.i | |
||
mplmapghm.r | |
||
mplmapghm.f | |
||
Assertion | mplmapghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplmapghm.p | |
|
2 | mplmapghm.b | |
|
3 | mplmapghm.d | |
|
4 | mplmapghm.h | |
|
5 | mplmapghm.i | |
|
6 | mplmapghm.r | |
|
7 | mplmapghm.f | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 1 | mplgrp | |
12 | 5 6 11 | syl2anc | |
13 | simpr | |
|
14 | 1 8 2 3 13 | mplelf | |
15 | 7 | adantr | |
16 | 14 15 | ffvelcdmd | |
17 | 16 4 | fmptd | |
18 | simprl | |
|
19 | simprr | |
|
20 | 1 2 10 9 18 19 | mpladd | |
21 | 20 | fveq1d | |
22 | 1 8 2 3 18 | mplelf | |
23 | 22 | ffnd | |
24 | 1 8 2 3 19 | mplelf | |
25 | 24 | ffnd | |
26 | ovex | |
|
27 | 3 26 | rabex2 | |
28 | 27 | a1i | |
29 | inidm | |
|
30 | eqidd | |
|
31 | eqidd | |
|
32 | 23 25 28 28 29 30 31 | ofval | |
33 | 7 32 | mpidan | |
34 | 21 33 | eqtrd | |
35 | fveq1 | |
|
36 | 12 | adantr | |
37 | 2 9 36 18 19 | grpcld | |
38 | fvexd | |
|
39 | 4 35 37 38 | fvmptd3 | |
40 | fveq1 | |
|
41 | fvexd | |
|
42 | 4 40 18 41 | fvmptd3 | |
43 | fveq1 | |
|
44 | fvexd | |
|
45 | 4 43 19 44 | fvmptd3 | |
46 | 42 45 | oveq12d | |
47 | 34 39 46 | 3eqtr4d | |
48 | 2 8 9 10 12 6 17 47 | isghmd | |