Metamath Proof Explorer


Theorem mplmapghm

Description: The function H mapping polynomials p to their coefficient given a bag of variables F is a group homomorphism. (Contributed by SN, 15-Mar-2025)

Ref Expression
Hypotheses mplmapghm.p P=ImPolyR
mplmapghm.b B=BaseP
mplmapghm.d D=f0I|f-1Fin
mplmapghm.h H=pBpF
mplmapghm.i φIV
mplmapghm.r φRGrp
mplmapghm.f φFD
Assertion mplmapghm φHPGrpHomR

Proof

Step Hyp Ref Expression
1 mplmapghm.p P=ImPolyR
2 mplmapghm.b B=BaseP
3 mplmapghm.d D=f0I|f-1Fin
4 mplmapghm.h H=pBpF
5 mplmapghm.i φIV
6 mplmapghm.r φRGrp
7 mplmapghm.f φFD
8 eqid BaseR=BaseR
9 eqid +P=+P
10 eqid +R=+R
11 1 mplgrp IVRGrpPGrp
12 5 6 11 syl2anc φPGrp
13 simpr φpBpB
14 1 8 2 3 13 mplelf φpBp:DBaseR
15 7 adantr φpBFD
16 14 15 ffvelcdmd φpBpFBaseR
17 16 4 fmptd φH:BBaseR
18 simprl φqBrBqB
19 simprr φqBrBrB
20 1 2 10 9 18 19 mpladd φqBrBq+Pr=q+Rfr
21 20 fveq1d φqBrBq+PrF=q+RfrF
22 1 8 2 3 18 mplelf φqBrBq:DBaseR
23 22 ffnd φqBrBqFnD
24 1 8 2 3 19 mplelf φqBrBr:DBaseR
25 24 ffnd φqBrBrFnD
26 ovex 0IV
27 3 26 rabex2 DV
28 27 a1i φqBrBDV
29 inidm DD=D
30 eqidd φqBrBFDqF=qF
31 eqidd φqBrBFDrF=rF
32 23 25 28 28 29 30 31 ofval φqBrBFDq+RfrF=qF+RrF
33 7 32 mpidan φqBrBq+RfrF=qF+RrF
34 21 33 eqtrd φqBrBq+PrF=qF+RrF
35 fveq1 p=q+PrpF=q+PrF
36 12 adantr φqBrBPGrp
37 2 9 36 18 19 grpcld φqBrBq+PrB
38 fvexd φqBrBq+PrFV
39 4 35 37 38 fvmptd3 φqBrBHq+Pr=q+PrF
40 fveq1 p=qpF=qF
41 fvexd φqBrBqFV
42 4 40 18 41 fvmptd3 φqBrBHq=qF
43 fveq1 p=rpF=rF
44 fvexd φqBrBrFV
45 4 43 19 44 fvmptd3 φqBrBHr=rF
46 42 45 oveq12d φqBrBHq+RHr=qF+RrF
47 34 39 46 3eqtr4d φqBrBHq+Pr=Hq+RHr
48 2 8 9 10 12 6 17 47 isghmd φHPGrpHomR