Metamath Proof Explorer


Theorem mplvrpmfgalem

Description: Permuting variables in a multivariate polynomial conserves finite support. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses mplvrpmga.1 S = SymGrp I
mplvrpmga.2 P = Base S
mplvrpmga.3 M = Base I mPoly R
mplvrpmga.4 A = d P , f M x h 0 I | finSupp 0 h f x d
mplvrpmga.5 φ I V
mplvrpmfgalem.z 0 ˙ = 0 R
mplvrpmfgalem.f φ F M
mplvrpmfgalem.q φ Q P
Assertion mplvrpmfgalem φ finSupp 0 ˙ Q A F

Proof

Step Hyp Ref Expression
1 mplvrpmga.1 S = SymGrp I
2 mplvrpmga.2 P = Base S
3 mplvrpmga.3 M = Base I mPoly R
4 mplvrpmga.4 A = d P , f M x h 0 I | finSupp 0 h f x d
5 mplvrpmga.5 φ I V
6 mplvrpmfgalem.z 0 ˙ = 0 R
7 mplvrpmfgalem.f φ F M
8 mplvrpmfgalem.q φ Q P
9 4 a1i φ A = d P , f M x h 0 I | finSupp 0 h f x d
10 simpr d = Q f = F f = F
11 coeq2 d = Q x d = x Q
12 11 adantr d = Q f = F x d = x Q
13 10 12 fveq12d d = Q f = F f x d = F x Q
14 13 mpteq2dv d = Q f = F x h 0 I | finSupp 0 h f x d = x h 0 I | finSupp 0 h F x Q
15 14 adantl φ d = Q f = F x h 0 I | finSupp 0 h f x d = x h 0 I | finSupp 0 h F x Q
16 ovex 0 I V
17 16 rabex h 0 I | finSupp 0 h V
18 17 a1i φ h 0 I | finSupp 0 h V
19 18 mptexd φ x h 0 I | finSupp 0 h F x Q V
20 9 15 8 7 19 ovmpod φ Q A F = x h 0 I | finSupp 0 h F x Q
21 breq1 h = x Q finSupp 0 h finSupp 0 x Q
22 nn0ex 0 V
23 22 a1i φ x h 0 I | finSupp 0 h 0 V
24 5 adantr φ x h 0 I | finSupp 0 h I V
25 eqid h 0 I | finSupp 0 h = h 0 I | finSupp 0 h
26 25 psrbasfsupp h 0 I | finSupp 0 h = h 0 I | h -1 Fin
27 26 psrbagf x h 0 I | finSupp 0 h x : I 0
28 27 adantl φ x h 0 I | finSupp 0 h x : I 0
29 1 2 symgbasf1o Q P Q : I 1-1 onto I
30 8 29 syl φ Q : I 1-1 onto I
31 f1of Q : I 1-1 onto I Q : I I
32 30 31 syl φ Q : I I
33 32 adantr φ x h 0 I | finSupp 0 h Q : I I
34 28 33 fcod φ x h 0 I | finSupp 0 h x Q : I 0
35 23 24 34 elmapdd φ x h 0 I | finSupp 0 h x Q 0 I
36 26 psrbagfsupp x h 0 I | finSupp 0 h finSupp 0 x
37 36 adantl φ x h 0 I | finSupp 0 h finSupp 0 x
38 f1of1 Q : I 1-1 onto I Q : I 1-1 I
39 30 38 syl φ Q : I 1-1 I
40 39 adantr φ x h 0 I | finSupp 0 h Q : I 1-1 I
41 0nn0 0 0
42 41 a1i φ x h 0 I | finSupp 0 h 0 0
43 simpr φ x h 0 I | finSupp 0 h x h 0 I | finSupp 0 h
44 37 40 42 43 fsuppco φ x h 0 I | finSupp 0 h finSupp 0 x Q
45 21 35 44 elrabd φ x h 0 I | finSupp 0 h x Q h 0 I | finSupp 0 h
46 eqidd φ x h 0 I | finSupp 0 h x Q = x h 0 I | finSupp 0 h x Q
47 eqidd φ y h 0 I | finSupp 0 h F y = y h 0 I | finSupp 0 h F y
48 fveq2 y = x Q F y = F x Q
49 45 46 47 48 fmptco φ y h 0 I | finSupp 0 h F y x h 0 I | finSupp 0 h x Q = x h 0 I | finSupp 0 h F x Q
50 eqid I mPoly R = I mPoly R
51 eqid Base R = Base R
52 50 51 3 26 7 mplelf φ F : h 0 I | finSupp 0 h Base R
53 52 feqmptd φ F = y h 0 I | finSupp 0 h F y
54 50 3 6 7 mplelsfi φ finSupp 0 ˙ F
55 53 54 breq1dd φ finSupp 0 ˙ y h 0 I | finSupp 0 h F y
56 22 a1i φ 0 V
57 41 a1i φ 0 0
58 breq1 h = g finSupp 0 h finSupp 0 g
59 58 cbvrabv h 0 I | finSupp 0 h = g 0 I | finSupp 0 g
60 30 5 5 56 57 25 59 fcobijfs2 φ x h 0 I | finSupp 0 h x Q : h 0 I | finSupp 0 h 1-1 onto h 0 I | finSupp 0 h
61 f1of1 x h 0 I | finSupp 0 h x Q : h 0 I | finSupp 0 h 1-1 onto h 0 I | finSupp 0 h x h 0 I | finSupp 0 h x Q : h 0 I | finSupp 0 h 1-1 h 0 I | finSupp 0 h
62 60 61 syl φ x h 0 I | finSupp 0 h x Q : h 0 I | finSupp 0 h 1-1 h 0 I | finSupp 0 h
63 6 fvexi 0 ˙ V
64 63 a1i φ 0 ˙ V
65 18 mptexd φ y h 0 I | finSupp 0 h F y V
66 55 62 64 65 fsuppco φ finSupp 0 ˙ y h 0 I | finSupp 0 h F y x h 0 I | finSupp 0 h x Q
67 49 66 breq1dd φ finSupp 0 ˙ x h 0 I | finSupp 0 h F x Q
68 20 67 eqbrtrd φ finSupp 0 ˙ Q A F